

Introduction to Particle Physics

(for non physics students)

3. FORCES

PROFESSOR FRANK CLOSE
EXETER COLLEGE
UNIVERSITY OF OXFORD

FORCES

Gravity

Electromagnetic. Weak. Strong

ep in Hatom

Gravity P.E. = 10-40
Electromag

c.f. size of proton ≈ 10-15 m.

size of univ. ≤ 10 byr. * 10 myr-1

≤ 1026 m.

10 = Radius of proton
Radius of Universe

particles at present energies

(10⁻³⁵m length or 10¹⁹ GeV grav. strong...

Gravity
wins for
large bodies
and reveals
surprises
that may
link with
particles

DARK MATTER

Rotation speed via gravity around a central mass

Newton:
$$F = G \frac{Mm}{R^2} = \frac{mv^2}{R}$$

$$V^2 = \frac{GM}{R}$$

speed goes down as TR

DARK MATTER

Rotation speed via gravity around a central mass

Newton:
$$F = G \frac{Mm}{R^2} = \frac{mv^2}{R}$$

$$V^2 = \frac{GM}{R}$$

speed goes down as TR

What is dark matter?

Electrically neutral.

Hot DM – lightweight like neutrinos

Cold DM – heavyweight Maybe SUSY (next lecture)

Colour and the Strong Force

How quarks work:

CHROMOSTATICS

(like electrostatics but with three types of + (-) charges)

Three colour charges

Quarks "positive"

Antiquarks "negative"

Now use familiar rules

"Like charges (colours) repel; opposite (colours) attract"

Simplest state: QQ* Meson

The THREE colours

enable quarks to attract one another

making BARYONS (e.g. the proton)

Three colour charges neutralise Makes baryon (e.g. proton)

Simple nucleus (deuteron)

Electric charge Atoms Molecules

Colour charge

Baryons

Nucleus

Quantum Electrodynamics: QED

Electric charge Atoms Molecules

Quantum Chromodynamics: QCD

Colour charge Baryons Nucleus

Quantum Electrodynamics: QED

Electric charge Atoms Molecules
Interaction of electric charges and photons

Quantum Chromodynamics: QCD

Colour charge Baryons Nucleus

Interaction of colour charges and gluons

Quantum Electrodynamics: QED

Electric charge Atoms Molecules

Interaction of electric charges and photons

"alpha" = 1/137 small; perturbation; 12 places of decimals

Quantum Chromodynamics: QCD

Colour charge Baryons Nucleus

Interaction of colour charges and gluons

Quantum Electrodynamics: QED

Electric charge Atoms Molecules

Interaction of electric charges and photons

"alpha" = 1/137 small; perturbation; 12 places of decimals

Quantum Chromodynamics: QCD

Colour charge Baryons Nucleus

Interaction of colour charges and gluons

short distance: high momentum "alpha" = 1/10 small; perturbation; "pQCD" v.precise

hadron size: low momentum "alpha" = large. lattice/models

Feynman diagram for QCD analogous

QED: electron; positron; photon

QCD: quark; antiquark; gluon

The Electroweak Story

Part 1: The WEAK Force

Fermi model (1934) of neutron beta decay

Effective strength
"G_F" "Fermi constant"
deduced by observed
rate of beta decay.

Empirical.
No theory (1934)
Small = feeble = "weak"

Fermi model (1934) of neutron beta decay

Now look into the black box with a modern high resolution microscope and reveals W-boson being exchanged

Effective strength

"G_F" "Fermi constant"

deduced by observed

rate of beta decay.

Empirical.
No theory (1934)
Small = feeble = "weak"

The Electroweak Story

Part 2: History and Unity

"Weak force as Electromagnetism in disguise"

The Electroweak Story

1989-95

Tune E+E=Mc2=91GeV

LEP 4 experiments 20 million 20

Z unstable. Decays "democratically" to $q\bar{q}$ etc $\mu \psi$ $\tau \bar{\tau} \bar{\tau}$

المال المال

Life ~ # of holes ⇒ # of decay podls

Perfect match if #v=3

1309-35

Tune E + E = Mgc = 916eV

Zurstuble. Decays "demonstically" is

19 etc pp tt

22 22 22 22 22

Z Lifetime

Heisenberg Uncertainty Principle

DE At = 6 × 10-25 GeV sec

example $\Delta t = \text{lifetime of unstable particle}$ $\Rightarrow \Delta E = \Delta M c^2 = \frac{6 \times 10^{-25} \text{ GeV}}{\Delta t \text{ (sec)}}$

ete-> Z (production probability)

Z Lifetime

Heisenberg Uncertainty Principle

DE At = 6 × 10-25 GeV sec

example
$$\Delta t = \text{lifetime of unstable particle}$$

$$\Rightarrow \Delta E = \Delta M c^2 = \frac{6 \times 10^{-25} \text{ GeV}}{\Delta t \text{ (sec)}}$$

ete-> 2 (production probability)

$$\Gamma = \Delta E = 2.5 \text{ GeV}$$

$$\Rightarrow \text{ Lifetime} = 10^{-25} \text{ sec}$$

1996-2000 LEP = (100 GeV) + & (100 GeV) + W W W

Heisenberg Uncertainty Principle.

AE At at a Calo Gov sec

etr-2 (production probability)

ob Lifelium, a le sec

The Electroweak Story

Part 3: Unity

"Weak force as Electromagnetism in disguise"

Beta decay (weak interaction): Feynman diagram for Fermi's original model

If energy E flows through the transmitted "virtual" particle (photon; Z) it costs 1/(E^2+M^2)

If energy E flows through the transmitted "virtual" particle (photon; Z) it costs 1/(E^2+M^2)

If E >> M the cost is 1/E^2....like the case of the photon

If energy E flows through the transmitted "virtual" particle (photon; Z) it costs 1/(E^2+M^2)

If E >> M the cost is 1/E^2...like the case of the photon

If E << M the cost is 1/M²

If energy E flows through the transmitted "virtual" particle (photon; Z) it costs 1/(E^2+M^2)

If E >> M the cost is 1/E^2...like the case of the photon

If E << M the cost is 1/M²

"weak strength"

1/100,000 GeV^2

= **1/137** x **1/(28 GeV)**^2

"weak" has fundamentally electromagnetic strength if m ~ 30GeV

"weak strength"

1/100,000 GeV^2

= 1/137 x 1/(28 GeV)^2

"weak" has fundamentally electromagnetic strength if m ~ 30GeV

More carefully: root 2; parity violation; SU2 x U1; Weinberg angle.. requires m(W) ~ 80 GeV; m(Z) ~ 90 GeV

Experimentally verified!!

At the heart of the Sun:

- Proton
- neutron
- · positron
- · neutrino

deuteron

Net result:

$$4p \rightarrow ^{4}He + 2e^{+} + 2\nu$$

The weak force is feeble in the Sun ...

..because 10,000,000K ~ 1 keV << 80 GeV

...this is why the sun has stayed active long enough for us to have evolved and be having this conversation.

- →We exist because m(W) is not zero
- → Mass matters

QED (electrons and photons)

QCD (quarks and gluons)

LEP

@ CERN

1989-2000