PET-MRI Project in FP7

LIP Motivations and Proposals

Rome, 14 October 2008

Joao Varela LIP, Lisbon

1

The institutions

LIP-Laboratory for Particle Physics, Lisbon

Detector and electronics development for CERN experiments since 20 years Medical applications

PET-Consortium

Eight technology and medical institutions, since 2003 New PET imaging technologies in breast cancer detection

PETsys, SA Start-up company, 2008

The background

PET mammography scanner in operation (ClearPEM)

Large APD-based system (12'000 channels)

Highly integrated readout system

Compact technology immune to magnetic fields

5 years development; 4.5 M€investment

ClearPEM Detector

- Two detection plates
- 192 crystal matrices (8x4 crystals each)
- Front-back APD readout for Dol measurement

Detector Technology

20 mm long LYSO:Ce crystals

Crystal matrices

Avalanche Photo Diodes (APD)

Double readout mode

Depth-of-interaction (DOI) measurement

192 detector modules

6144 crystals

Crystal matrices

384 APD arrays

Frontend ASIC

State of the art detector frontend electronics Very low noise amplifiers, analog memories and multiplexers Typical input charge ~30 femto Coulomb Data driven synchronous architecture

Input:	192 channels
Max input charge:	90 fC
Shaping:	40 ns
Noise:	ENC ~ 1300 e-
Clock frequency :	100 MHz
Analog memories:	10 samples
Output multiplexing:	2 highest channels
Power:	3 mW/channel

Largest number of input channels in a chip for APDs readout

Technology: CMOS 0.35 μm
Chip area: 70 mm2

Frontend Electronics Integration

Compact system inside the Detector Head:

- 6000 APD channels
- 400 HV lines
- 160 high speed (600 MHz) output lines
- High frequency clock (100 MHz)

Data Acquisition System

- CMS-like trigger and data acquisition system
- System is housed in a single crate with two dedicated buses

ClearPEM scanner

Operation, Monitoring, Reconstruction and Visualization Software

9

Scanner Performance

Our interests in FP7 PET-MRI project

Two sub-projects:

Construction and evaluation of PET insert for brain MRI, based on APDs

R&D on readout and data acquisition for SiPM-based PET TOF

PET insert for brain MRI

Collaboration with EPFL – CIBM, Lausanne, Suisse Professor Rolf Gruetter.

PET insert for brain MRI

Sub-project :

Based on ClearPEM technology (IP protected)

Technology upgrade for MRI-PET e.m. compatibility

Development of full prototype:

Time scale ~1-2 year; bare cost ~1M€; development costs ~2M€

Integration with MRI system in collaboration with CIBM/EPFL, Lausanne
 Other collaborators:

•MRI-PET e.m. compatibility and magnetic transparent PET gantry

•PET-MRI image fusion software

Evaluation of PET-MRI imaging

Justification:

APD-based technology for PET-MRI not mature (no commercial machines available).

One single prototype brain PET/MRI developed so far (Siemens)

ClearPEM technology has better resolution:

individual crystal-channel coupling, Dol capability 2mm

• Full prototype in time for PET-MRI imaging evaluation within the project

SiPM-based PET technology MRI compatible

SiPM technologies and detector configuration for PET-MRI with TOF capabilities

Sub-project

 Readout ASIC and data acquisition system for SiPM with time measurement (time scale ~3 years)

Technologies scalable to full whole-body scanner

Development of a small scale lab demonstrator within the project

Collaboration with CERN in ASIC development

Justification:

•TOF with 100 ps resolution for brain and whole-body imaging: large gains in sensitivity

Compatibility with MRI

PET-MRI imaging evaluation in a follow-up project.