Scintillation studies for The Axial 3-D PET Concept HPD-PET project implemented by Wave Length Shifter Strip Hodoscope

R. De Leo INFN, Sezione di Bari, I-70122 Bari, Italy

The 3D PET cameras

Many rings of crystal–photodetector blocks radially displaced Lc =1.5-3cm the axial HPD-PET concept

Arrays of long (Lc~10-20 cm) crystal bars read out at both sides by segmented HPDs

Concept made possible by CERN development of rectangular segmented 5" HPDs with integrated self-triggering electronics

•

centred on crystal matrix

2) ADVANTAGES OF THE AXIAL HPD-PET CONCEPT

possibility to reconstruct the int. point of part of γ 's that suffers a double (Compton + photoelectric) event in the same module

COMPTON + PHOTOELECTRIC events-

- Select only events in which Compton scattering happens in forward hemisphere
- → Restrict to Compton angle 10° ≤ θ ≤ 60°
- → Ask for energy deposit in first interaction E ≤ 170 keV
- ~ 25% Compton events (50 keV [energy cut] < E < 170 keV) followed by

a photoelectric one in the same module can unambiguously be reconstructed

detection efficiency increases but spatial resolution worsens

Inorganic Scintillation crystals

Criteria to be taken into account: light yield, absorption length, photo fraction, self absorption, decay time, availability, machinability, price.

	YAP:Ce	LSO:Ce	LuAP:Ce	LaBr ₃ :Ce	BGO
Density p (g/cm ³)	5.55	7.4	8.34	5.3	7.13
Effective atomic charge Z	32	66	65	46.9	75
Scintillation light output (photons / MeV)	18000	23000	~10000	~61000	~9000
wavelength λ max of max. emission (nm)	370	420	370	356	480
Refractive index n at λ max	1.94	1.82	1.95	~1.88	~2.15
Bulk light abs. length λ bulk (cm) at λ max	~20	~40			
Principal decay time (ns)	27	40	18	30+5	300
Mean γ atten. length λa at 511keV (mm)	22.4	11.5	10.5	~20	~11.6
Photo fraction at 511 keV (%)	4,5	32.5	30.5	15	41.5
Energy resolution (FWHM) at 663 keV	4.5	8		2.9	

 $\widehat{\mathbf{U}}$

LSO (LYSO) is the most interesting crystal scintillator : fast (40 ns), short att. length (~12mm) at 511keV, high photofraction (32%), not hygroscopic, but high energy resolution (8% FWHM)

PROOF of the HPD-PET CONCEPT with YAP and LYSO crystals and PMTs

(3.2 x 3.2 x 100 mm³)

4 linear translator M-511(Phys.Instrum.)

PMT H3164-10 (Φ=8mm, 1250 V)

 \rightarrow optimize λ_{eff} value by wrapping or coating the crystal lateral surface

Typical pulses from LYSO bars

λ_{eff} in polished 3x3x100 mm³ YAP-LYSO

LYSO more transparent (higher λ_{eff}) than YAP
too high λ -eff values (poor σ_z) both for LYSO and YAP

λ (polished) / λ(teflon) = 1.9

possibility to tune λ -eff value with metal coatings

metal coating reduces No

HPD-PET concept

New WLS-HPD-PET concept

(proposed by D.Schinzel) WLS strip width w = 3 mm, $\sigma_z \leq ~w/\sqrt{12}$ =0.9 mm

crystal	λeff(cm)	$\sigma_{z}^{}(mm)$	$\sigma_{\rm E}/{\rm E}$ (%)
YAP polish	21	10	4
YAP coated	8	4	6
LYSO polish	42	18	7
LYSO coated	8	5	10

λ eff(cm)	$\sigma_{z}^{}(mm)$	σ _E /Ε (%)		
21	1	4		
42	1	7		

A. Braem et al., NIM A580(2007)1513

SETUP for WLS-HPD-PET Test

LYSO + 2WLS readout by PMTs

Typical pulses from WLS strips bars

charge distribution of the sum of two WLS

charges on 2 LYSO bars

at z = 64 mm (centre of strip #1) 65% of charge on strip #1, 35% on strip#2

Scintillation position (DoI) reconstruction

 $Z_{rec} = c + m (Q_2 - Q_1) / (Q_2 + Q_1)$

m = 0.9 (# 1) is due to a different det.eff. of the two WLS strips. c = constant

Zrec distribution from two WLS charges

From our publication in II Nuovo Cimento Vol. 29 C,N. 4

FWHM values

Comparison of reconstruction resolution (FWHM values): HRRT data vs. HPD–PET simulation. In the simulations a crystal length of 150 mm was assumed. All values correspond to the central plane (z=0).

	Transaxial resolution		Axial resolution		Mean volumetric reso-
					lution
	$R_x(=R_y) \text{ (mm)}$		$R_z (\rm{mm})$		$R_V = R_x \times R_y \times R_z$
					(mm ³)
	x=0;	x=100;	x=0;	x=100;	
	y=0	y=0	y=0	y=0	
HRRT data, span 9	2.35	2.75	2.5	3.6	20
HIRRT data, span 3	2.35	2.75	2.5	2.8	18
HPD-PET LSO	1.85	2.35	5.78	6.33	26
$\rm HPD\text{-}PET\ LaBr_3$	1.59	2.13	3.43	3.57	11.8

WLS-HPD-PET LYSO ~ 2.2 ~ 2.2

2.1

~ 9 mm³

This is ~ physical limit

due to positron range and gamma acolinearity