Neutrino Physics:

Present and Future

Boris Kayser CERN November 28, 2006

Experimental Evidence

Evidence For Flavor Change

Neutrinos Evidence of Flavor Change

Solar Reactor (L ~ 180 km) Compelling Compelling

Atmospheric Accelerator (L = 250 and 735 km) Compelling Compelling

Stopped μ^+ Decay $\begin{pmatrix} LSND \\ L \approx 30 \text{ m} \end{pmatrix}$

Unconfirmed

Solar Neutrinos

Nuclear reactions in the core of the sun produce v_e . Only v_e .

The Sudbury Neutrino Observatory (SNO) measures, for the high-energy part of the solar neutrino flux:

 $v_{sol} d \rightarrow e p p \Rightarrow \phi_{v_e}$

$$v_{sol} d \rightarrow v n p \Rightarrow \phi_{v_e} + \phi_{v_{\mu}} + \phi_{v_{\tau}}$$

From the two reactions,

$$\frac{\phi_{\nu_e}}{\phi_{\nu_e} + \phi_{\nu_{\mu}} + \phi_{\nu_{\tau}}} = 0.340 \pm 0.023 \text{ (stat)} \pm 0.030 \text{ (syst)}$$

Clearly, $\phi_{\nu_{\mu}} + \phi_{\nu_{\tau}} \neq 0$. Neutrinos change flavor.

The now-established mechanism for solar $v_e \rightarrow v_{\mu} / v_{\tau}$ is not oscillation in vacuum but the —

Large Mixing Angle version of the — Mikheyev Smirnov Wolfenstein

— Effect.

This occurs as the neutrinos stream outward through solar material. It involves interactions with matter, but also requires neutrino mass and mixing.

How Does the Large Mixing Angle MSW Effect Work?

The solar *matter effect* is important for the high-energy ⁸B neutrinos, not the low-energy pp neutrinos.

- Since v_3 couples at most feebly to electrons (to be discussed), and solar neutrinos are born v_e , the solar neutrinos are mixtures of just v_1 and v_2 .
- Solar neutrino flavor change is $v_e \rightarrow v_x$, where v_x is some combination of v_μ and v_τ .

This is a 2-neutrino system.

In the sun,

$$H = \frac{\Delta m_{sol}^2}{4E} \begin{bmatrix} -\cos 2\theta_{sol} & \sin 2\theta_{sol} \\ \sin 2\theta_{sol} & \cos 2\theta_{sol} \end{bmatrix} + \sqrt{2}G_F N_e \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{v}_e \\ \mathbf{v}_x \end{bmatrix}$$

At the center of the sun,

 $\sqrt{2} G_F N_e \approx 0.75 \times 10^{-5} eV^2 / MeV$.

For $\Delta m_{sol}^2 \approx 8 \times 10^{-5} \text{ eV}^2$ and typical ⁸B neutrino energy of ~ 8 MeV,

 $\Delta m_{sol}^2 / 4E \approx 0.25 \times 10^{-5} \text{ eV}^2 / \text{MeV}$.

The interaction term in H dominates, and ν_e is approximately an eigenstate of H.*

*For the (E ~ 0.2MeV) pp neutrinos, H_{Vac} dominates.

The ⁸B solar neutrino propagates outward adiabatically.

It remains the slowly - changing heavier eigenstate of the slowly - changing H.

It emerges from the sun as the heavier eigenstate of H_{Vac} , v_2 .*

It stays v_2 until it reaches the earth. Nothing "oscillates"! Since $v_2 = v_e \sin\theta_{sol} + v_x \cos\theta_{sol}$, (See 2 × 2 U matrix) Prob[See v_e at earth] = $\sin^2\theta_{sol}$.

*Good to 91% (Nunokawa, Parke, Zukanovich-Funchal)

Reactor (Anti)Neutrinos

The vacuum neutrino properties Δm^2_{sol} and θ_{sol} implied by LMA-MSW are —

$$\Delta m_{sol}^2 \sim 8 \ge 10^{-5} \, eV^2$$
; $\theta_{sol} \sim 34^\circ$.

This has implications for the behavior of reactor \overline{v}_{e} .

The fractional importance of matter effects on an oscillation involving a vacuum splitting Δm^2 is —

For
$$\Delta m^2 = \Delta m^2_{sol} \sim 8 \ge 10^{-5} \text{ eV}^2$$
,
 $x = 2.5 \ge 10^{-3} \text{ E(MeV)}$.

At reactor energies of a few MeV, this is negligible. The KamLAND detector is ~ 180 km from reactor $\overline{v_e}$ sources.

For KamLAND, at say 3 MeV, the argument of $-\frac{\sin^2[1.27\Delta m^2_{sol}(eV^2)L(km)/E(GeV)]}{\sin^2[1.27\Delta m^2_{sol}(eV^2)L(km)/E(GeV)]}$

3.9 x (π/2).

is —

The experiment sees an energy-averaged oscillation. It should see substantial disappearance of \overline{v}_{e} flux. KamLAND actually does see —

Reactor $\overline{v_e}$ do disappear.

Flavor change, with Δm_{sol}^2 and θ_{sol} in the LMA-MSW range, fits both the solar and reactor data.

Solar Δm^2 and mixing angle from SNO analysis of solar neutrino and KamLAND data

Evidence for the $os^{c}i_{l}l^{a}t_{j}o^{n}$ of flavor change

KamLAND \overline{v}_{e} event rate vs. L/E, assuming each \overline{v}_{e} traveled L = L₀ = 180 km.

Isotropy of the $\geq 2 \text{ GeV cosmic rays} + \text{Gauss' Law} + \text{No } \nu_{\mu} \text{ disappearance}$ $\Rightarrow \frac{\phi_{\nu_{\mu}}(\text{Up})}{\phi_{\nu_{\mu}}(\text{Down})} = 1$.

But Super-Kamiokande finds for $E_v > 1.3 \text{ GeV}$

$$\frac{\phi_{\nu_{\mu}}(Up)}{\phi_{\nu_{\mu}}(Down)} = 0.54 \pm 0.04 .$$

- Half of the upward-going, long-distance-traveling ν_{μ} are disappearing.
- Voluminous atmospheric neutrino data are well described by —

with —

 $1.9 \times 10^{-3} < \Delta m_{atm}^2 < 2.9 \times 10^{-3} \,\mathrm{eV}^2$

and —

 $\sin^2 2\theta_{atm} > 0.92$

Accelerator Neutrinos

Two experiments: K2K and MINOS

Latest Results From MINOS

The Atmospheric Δm^2 and Mixing Angle

Coming: A Test of the $\nu_{\mu} \rightarrow \nu_{\tau}$ Hypothesis

Look for τ production in Gran Sasso by neutrinos born as v_{μ} at CERN.

(CNGS)

The (Mass)² Spectrum

Are there *more* mass eigenstates, as LSND suggests?

Leptonic Mixing

This has the consequence that —

$$|v_i\rangle = \sum_{\alpha} U_{\alpha i} |v_{\alpha}\rangle$$

Flavor- α fraction of $v_i = |U_{\alpha i}|^2$.

When a v_i interacts and produces a charged lepton, the probability that this charged lepton will be of flavor α is $|U_{\alpha i}|^2$. The spectrum, showing its approximate flavor content, is

 $\mathbf{v}_{e}[|U_{ei}|^{2}] \qquad \mathbf{v}_{\mu}[|U_{\mu i}|^{2}] \qquad \mathbf{v}_{\tau}[|U_{\tau i}|^{2}]$

The Mixing Matrix

 Atmospheric
 Cross-Mixing
 Solar

 $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{22} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $c_{ij} \equiv \cos \theta_{ij}$ $s_{ij} \equiv \sin \theta_{ij}$ $\times \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Majorana CP $\theta_{12} \approx \theta_{sol} \approx 34^{\circ}, \ \theta_{23} \approx \theta_{atm} \approx 37-53^{\circ}, \ \theta_{13} < 10^{\circ}$ phases δ would lead to $P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}) \neq P(\nu_{\alpha} \rightarrow \nu_{\beta})$. But note the crucial role of $s_{13} \equiv \sin \theta_{13}$.

Good Luck

Because $(\Delta m_{sol}^2 / \Delta m_{atm}^2) << 1$ and $\theta_{13} << 1$, all confirmed flavor change processes seen so far are effectively **two-neutrino** processes.

Because $\theta_{13} \ll 1$, $\theta_{atm} \approx \theta_{23}$ and $\theta_{sol} \approx \theta_{12}$.

This has greatly simplified the analysis of what is happening.

The Majorana CP Phases

The phase α_i is associated with neutrino mass eigenstate v_i :

 $U_{\alpha i} = U_{\alpha i}^0 \exp(i\alpha_i/2)$ for all flavors α .

Amp $(v_{\alpha} \rightarrow v_{\beta}) = \sum_{i} U_{\alpha i}^{*} \exp(-im_{i}^{2}L/2E) U_{\beta i}$ is insensitive to the Majorana phases α_{i} . Only the phase δ can cause CP violation in neutrino oscillation.

There Is Nothing Special About θ_{13}

All mixing angles must be nonzero for CP.

For example —

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) - P(\nu_{\mu} \rightarrow \nu_{e}) = 2\cos\theta_{13}\sin2\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\sin\delta$$
$$\times \sin\left(\Delta m^{2}_{31}\frac{L}{4E}\right)\sin\left(\Delta m^{2}_{32}\frac{L}{4E}\right)\sin\left(\Delta m^{2}_{21}\frac{L}{4E}\right)$$

In the factored form of U, one can put
$$\delta$$
 next to θ_{12} instead of θ_{13} .