

Gravitational Wave Astronomy I

Michael Landry LIGO Hanford Observatory California Institute of Technology

on behalf of the LIGO Scientific Collaboration http://www.ligo.org

CERN Oct 16-18, 2006

LIGO-G060513-00-Z

Credit: Werner Benger/ZIB/AEI/CCT-LSU

New windows

LIGO-G060513-00-Z

Challenges for a young field

- First direct detection of gravitational waves
 - » Detection possible with existing detectors
 - » Probable with upgrades to existing facilities, and/or near-future new ones
- Transition to a field of observational astronomy
 - » EM emission incoherent superposition of many emitters
 - » Gravitational wave (GW) emission coherently produced by bulk motions of matter
 - » Matter is largely transparent to gravitational waves
 - Makes them hard to detect
 - Makes them a good probe of previously undetectable phenomena, e.g. dynamics of supernovae, black hole and neutron star mergers
 - » Gravitational wave detectors are naturally all-sky devices; "pointing" can be done later in software

Overview

- Day 1: Introduction. Sources. Detectors.
 - » An introduction to gravitational wave astronomy
 - » What are gravitational waves
 - » Sources
 - » Brief survey of detectors: bars, ground-based interferometers (each with one or two highlights), LISA
- Day 2 : Ground-based interferometry
 - » Interferometric detectors
 - LIGO, GEO, Virgo
 - » Some topics in commissioning: the path to design sensitivity
 - » Science mode running with LIGO, GEO and TAMA
- Day 3: Data analysis. Future detectors.
 - » Search methods
 - » Analyses from science runs for inspiral, burst, stochastic and continuous wave sources
 - » Advanced LIGO

Gravitational waves

- GWs are "ripples in spacetime": rapidly moving masses generate fluctuations in spacetime curvature:
 - » They are expected to propagate at the speed of light
 - » They stretch and squeeze space

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

The two polarizations: the gravitational waveforms

- The fields are described by <u>2</u> independent polarizations: h₊(t) and h_x(t)
- The waveforms carry detailed information about astrophysical sources
- With gravitational wave detectors one observes (a combination of) h₊(t) and h_x(t))

What is the observable effect?

Example:

Ring of test masses responding to wave propagating along z

Amplitude parameterized by (tiny) dimensionless strain h:

$$h(t) = \frac{\delta L(t)}{L}$$

Why look for gravitational radiation?

- "Because it's there!"
 - » George Mallory upon being asked, "why climb Everest?"
- Test General Relativity:
 - » Quadrupolar radiation? Travels at speed of light?
 - » Unique probe of strong-field gravity
- Gain different view of Universe:
 - » Sources cannot be obscured by dust / stellar envelopes
 - » Detectable sources some of the most interesting, least understood in the Universe
 - » Opens up entirely new non-electromagnetic spectrum.
 - » May find something unexpected

Orbital decay: strong indirect evidence

Neutron Binary System - Hulse & Taylor

PSR 1913 + 16 -- Timing of pulsars

Neutron Binary System

- separated by ~2x10⁶ km
- $m_1 = 1.44 m_{\odot}$; $m_2 = 1.39 m_{\odot}$; $\epsilon = 0.617$

Prediction from general relativity

- spiral in by 3 mm/orbit
- rate of change orbital period

Emission of gravitational waves

Orbital decay: strong indirect evidence

Neutron Binary System - Hulse & Taylor

PSR 1913 + 16 -- Timing of pulsars

Emission of gravitational waves

Comparison between observations of the binary pulsar PSR1913+16, and the prediction of general relativity based on loss of orbital energy via gravitational waves

17 / sec

See "Tests of General Relativity from Timing the Double Pulsar" Science Express, Sep 14 2006

The only double-pulsar system know, PSR J0737-3039A/B provides an update to this result. Orbital parameters of the double-pulsar systemed agree with those predicted by GR to 0.05%

Neutron Binary System

- separated by ~2x10⁶ km
- $m_1 = 1.44 m_{\odot}$; $m_2 = 1.39 m_{\odot}$; $\epsilon = 0.617$

~ 8 hr

Prediction from general relativity

- spiral in by 3 mm/orbit
- rate of change orbital period

Aside: some terminology

Beam patterns

$$\frac{\delta L(t)}{L} = h(t) = F^+ h_+(t) + F^\times h_\times(t)$$

- F⁺,F^x : [-1, 1]
- F = F(t; α , δ)

LIGO example:

Strain noise curves

Aside: some terminology

Beam patterns

$$\frac{\delta L(t)}{L} = h(t) = F^+ h_+(t) + F^\times h_\times(t)$$

- F+,Fx: [-1, 1]
- F = F(t; α , δ)

Strain noise curves

Sources

- Very high (10⁴Hz ≤ f ≤ 10⁵Hz) gravitational waves
 - » Few sources expected, but, for example: neutron star oscillations
 - » Ground-based interferometers sensitive not only in low-f (near-DC) audio band, but again in higher bands (e.g. LIGO ~37kHz, ~74kHz)
- High (1Hz ≤ f ≤ 10⁴Hz) gravitational waves (audio band)
 - » Continuous waves: spinning compact objects
 - » Binary neutron star and black hole coalescences
 - » Burst events
 - » Stochastic backgrounds

Low $(10^{-5}\text{Hz} \le f \le 1\text{Hz})$ gravitational waves

- » Continuous waves: binary compact objects
- » Binary-black hole coalescences
- » Stochastic backgrounds

Very low $(10^{-9}\text{Hz} \le f \le 10^{-7}\text{Hz})$ gravitational waves

- » Stochastic sources: pulsar timing yields best observational limit on stochastic background
- Ultra low (10⁻¹⁸Hz ≤ f ≤ 10⁻¹³Hz) gravitational waves
 - » Stochastic sources: polarization of CMB yields limit

Groundbased detectors

Spacebased – detectors

Continuous Waves

- Waves from a single compact object such as a neutron or strange star (with a mountain, or precession, or with dynamic modes) in our galaxy
- Results in nearly-sinusoidal continuous gravitational waves
- Signal is doppler modulated by relative motion of star and detector, and amplitude modulated by beam pattern of detectors
- Known radio pulsars, either isolated or in binary systems
- Known x-ray neutron stars, or x-ray pulsars, LMXBs

Unknown neutron stars – all sky, blind searches

Crab nebula
Credit: NASZ/HST/
Chandra

Supernova remnant Cas A Credit: NASA/CXC/ GSFC/U. Hwang et al.

Inspiral and merger of Black Holes and Neutron Stars

NS-NS waveforms are well described BH-BH need better waveforms

NS-NS (no noise)

BH-BH (no noise)

Significant theoretical advances in simulation of BHBH mergers, see: Pretorius, 2005;
Baker et al, 2005;

Campanelli et al, 2005

Bursts sources

Supernova 1987A Rings

- Sources emitting short transients of gravitational radiation
 - » Supernovae core-collapse
 - » BBH, BNS mergers
 - » Black hole normal modes
 - » Neutron star instabilities
 - » Cosmic string cusps and kinks
 - » The unexpected!

- What we know about them ...
 - » Catastrophic astrophysical events observed in the particle and/or electromagnetic sector will plausibly be accompanied by short signals in the gravitational wave sector plausible suspects
 - » Exact waveforms are not or poorly modeled
 - » Durations from few millisecond to x100 millisecond durations with enough power in the instruments sensitive band (100-few KHz)
 - » Searches tailored to the *plausible suspects* "triggered searches"
 - » ...or aimed to the all-sky, all-times blind search for the unknown using minimal assumption on the source and waveform morphology "untriggered" searches
- Multi-detector analyses are of paramount importance

Stochastic sources and limits

Characterized by log-frequency spectrum:

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}(f)}{d\ln f}$$

Low frequency sources

- Low frequency (10^{-5} Hz \leq f \leq 1Hz) sources are thought to be guaranteed
- Majority are long-lived
- One year of LISA data contains:
 - » A dozen of known solar mass binaries (verification sources)
 - ~ 10000 white dwarf binaries (a few with NS companion)
 - ~ 100 extreme mass-ratio inspirals
 - » ~ 10 massive BH binaries
 - Some short lived burst events
 - Stochastic foregrounds and backgrounds

Binary black hole 3C 75 Credit: NASA/CXC/Hudson et al. NRAO/VLA/NRL

Gravitational wave spectrum

First efforts for direct detection

- Pioneered by Joseph Weber in the early 1960's
- Room temperature in-vacuum resonant mass detectors
- Piezoelectric strain gauges at center of bar
- Narrow band instruments with sensitivity near 1kHz
- Looked for coincident burst events with detectors in Washington D.C. and Chicago
- Controversy in detection claims that have not be verified in follow up searches

Resonant mass detectors

- Cryogenic bars with end transducers
- Use of SQUID low-noise amplifiers
- Vibration isolation
- Since 1997, Nearly-continuous coverage in coincident data runs

Allegro
@LSU

IGEC : International Gravitational Event Collaboration

Strain Noise Amplitude of IGEC2 detectors

Ground based interferometers

Interferometric gravitational wave detection

Suspended Interferometers

» Suspended mirrors in "free-fall"

- » Michelson IFO is "natural" GW detector
- » Broad-band response (~50 Hz to few kHz)
- » Waveform information (e.g., chirp reconstruction)

LIGO design length sensitivity: 10-18m

What Limits Sensitivity of Interferometers?

- Seismic noise & vibration limit at low frequencies
- Atomic vibrations (Thermal Noise) inside components limit at mid frequencies
- Quantum nature of light (Shot Noise) limits at high frequencies
- Myriad details of the lasers, electronics, etc., can make problems above these levels

Interferometers in Asia, Australia

TAMA 300 (Japan) (300-m)

Longest running detector: 9 data runs!

AIGO (Australia) (80-m, but 3-km site)

Operated by ACIGA; part of LIGO Scientific Collaboration.

Interferometers in Asia, Australia

TAMA 300 (Japan) (300-m)

AIGO (Australia) (80-m, but 3-km site)

¹⁰⁵ Operated by ACIGA; part of LIGO Scientific Collaboration.

Virgo Optical Configuration

VIRGO Super Attenuator (((()))

"Long Suspensions"

- inverted pendulum
- five intermediate filters

Suspension vertical transfer function measured and simulated (prototype)

GEO600 Optical Configuration

GEO600 Seismic Isolation and Suspension

LIGO – Laser Interferometer Gravitational Wave Observatory

- Three interferometers at two distant sites
- Design philosophy: rely on proven technologies, scale up from prototype by two-orders of magnitude
- Achieved design sensitivity in Nov 05, currently operating with GEO in data-collection "science" mode

Landry - CERN - 16 Oct 2006

LIGO noise progress

Comparing strain noise

Ground-based instruments

LISA

LISA is a joint ESA/NASA mission with launch date in the time frame 2014/15

- » A gravitational wave telescope in the frequency band 10⁻⁵ 1 Hz
- » All sky monitor

» 3 drag-free satellites separated by 5 x 106 km, and trailing the earth by

20 deg

» Precision 10 pm

- » Redundancy if one spacecraft fails
- » Beam pattern from roll

Concluding remarks

- Search for direct detection of gravitational waves complicated by tiny signal, $\delta L \sim 10^{-18} m$; space is stiff, and sources are distant
- Requires cooperation in a global network of detectors
- Expect to make first detection within the next decade, possibly with existing detectors
- But for the next two days...

Estimated noise limits for S2 (as planned in October 2002)

Science runs and analyses

LIGO Hanford control room 31 Mar 2006 – S5

What would a pulsar look like?

 Post-processing step: find points on the sky and in frequency that exceeded threshold in many of the sixty ten-hour segments

Simulated (software) pulsar signal in S3 data

Advanced LIGO

Detector Improvements:

New suspensions:

Single → Quadruple pendulum

Lower suspensions therma

in bandwidth

Passive → Active

Lowers seismic "wall" to ~10 Hz