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Summary of lecture 1

� Understanding QCD is crucial for the LHC discovery

programme

� QCD is an asymptotically-free QFT, supported by hadron

spectroscopy and high-energy experiments

� Perturbative techniques can be used, but are not sufficient:

long-distance effects are always present

� To deal with them, one must introduce (at least)

hadron-parton duality, infrared safety, factorization theorems



EXAMPLES OF PERTURBATION

THEORY AT WORK

e+e− −→ hadrons, jets

DIS and the problem of initial-state divergences

Scale dependence of PDFs



Let’s see in practice the way in which hadron-parton duality, infrared safety

and factorization theorems work

The simplest case is the total hadronic rate in e+e− collisions

I Hadron-parton duality =⇒ compute the total partonic rate

I Total rate is (trivially) infrared safe

It’s actually customary to give the results as

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)



At the lowest order in perturbation theory (of αS)

R =
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i,f
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which is also a test of colour and charge assignments (here for u, d,
and s quarks)

For larger c.m. energies, just add more quark flavours

Is this result systematically improvable, in the sense of perturbation

theory? This is what we expect from the βQCD computation



Perturbative corrections to R

At the first order beyond Born (next-to-leading order, NLO), there are two classes of

corrections (as in QED)

I Real contribution: all Feynman diagrams with an

additional (wrt Born) parton in the final state

I Virtual contribution: all one-loop Feynman dia-

grams that can be obtained from Born diagrams

R and V don’t interfere: diagrams have different number of legs

real = gSAR virtual = g2
S
AV

|ANLO|2 = |ALO|2 + αS

(

|AR|2 + 2<(ALOA?
V )

)

+O(α2
S
)



Real contribution

xi =
2pi ·Q

Q2
=

2Ei√
s

p1 + p2 + p3 = Q =⇒
x1 + x2 + x3 = 2

Phase space and matrix element:

dΦqq̄g =
s

32(2π)5
δ(2− x1 − x2 − x3)dx1dx2dx3dΩ

|AR|2 = |ALO|2 CF

αS

2π

x2
1 + x2

2

(1− x1)(1− x2)

which lead to

σR =

∫

dΦqq̄g |AR|2 =∞

It is instructive to see why this is divergent



1− x1 = x2
E3√

s
(1− cos θ23) =

(p2 + p3)
2

Q2

1− x2 = x1
E3√

s
(1− cos θ13) =

(p1 + p3)
2

Q2

The divergences of the matrix elements are at

x1 −→ 1 & x2 −→ 1 ⇐⇒ E3 −→ 0 soft

x1 −→ 1 ⇐⇒ θ23 −→ 0 collinear

x2 −→ 1 ⇐⇒ θ13 −→ 0 collinear

This clarifies that the divergences are not physical: we are pushing pQCD beyond its

range of applicability, since parton energies or parton-pair invariant masses are

comparable to hadron masses =⇒ confinement effects can’t be neglected

In other words: we are trying to resolve partons in a regime where the concept of parton

is not particularly meaningful

Go home and throw hadron-parton duality (and pQCD) in the bin?



Not yet: what the previous computation tells us is that the cross section for

the production of qq̄g is not a meaningful quantity in perturbation theory

But this cross section is just one of the contributions to e+e− −→ hadrons

at O(αS) – we still have to consider the virtual contribution

So before throwing everything away, we have to prove that soft/collinear

emissions are dominant also after adding virtual corrections

Note that what we’ve got is not peculiar of QCD: you get the same if you
compute µ+µ−γ production in QED



Virtual contribution

xi =
2pi ·Q

Q2
=

2Ei√
s

p1 + p2 = Q =⇒
x1 = 1, x2 = 1

One can easily see that

σV =

∫

dΦqq̄<(ALOA?
V ) = −∞

I Physical meaning: we are trying to compute the probability of having

exactly two quarks in the final state

I As in QED, this quantity diverges order-by-order in PT. The result

to all orders, however, is not the same as in QED, owing to the different

behaviour of the running coupling



σR + σV =∞−∞ = ?

! Regularize R and V contributions before summing them −→ in QCD,
this usually means computing the integrals in d = 4− 2ε dimensions

∫ 1 dx

1− x
= − log(0)

regularization−→
∫ 1 dx(1− x)−2ε

1− x
= − 1

2ε

=⇒
σR = σLOCF

αS

2π

(

2

ε2
+

3

ε
+

19

2
− π2

)

+O(ε)

σV = σLOCF

αS

2π

(

− 2

ε2
− 3

ε
− 8 + π2

)

+O(ε)

lim
ε→0

(σR + σV ) =
αS

π
σLO

The singularities are gone! So we can obtain

R = NC

∑

f

Q2
f

(

1 +
αS

π

)

+O(α2
S
)

This is a small correction (< 5%), and improves the comparison to data –
we have proven that the total rate is insensitive to soft/collinear emissions



Physical meaning: soft/collinear real configurations are kinematically
degenerate with virtual configurations. Thus, it looks like finite
quantities are obtained by summing over degenerate (ie non-resolvable)
partonic configurations

This is true to all orders:

Kinoshita-Lee-Nauenberg (KLN) theorem: in the
computation of inclusive (enough) quantities, infrared
divergences cancel, and the result is finite

And this can indeed be checked by explicit computations −→



R = RLO

[

1 +
αS

π
+ 1.411

(αS

π

)2

− 12.8
(αS

π

)3
]

+O(α4
S
)

The new terms improve further the agreement with data

This is a huge success! Keep in mind we have used several highly non

trivial ingredients

• Asymptotic freedom

• Hadron-parton duality

• Infrared safety

and we have also verified that the KLN theorem works

Speaking of which: how can one prove such an all-order statement?



How can one prove such a general statement as KLN theorem, since computations are

observable-specific?

Divergences are actually observable independent, and ”universal”; can be easily

computed in a physical gauge
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a

kb = zka + kT + ζbn

kc = (1− z)ka − kT + ζcn

k2
b = 0 ⇒ ζb = − k2

T

2zn · ka

k2
c = 0 ⇒ ζc = − k2

T

2(1− z)n · ka

dσR =
αS

2π

∫

dk2
T
dz CF

1 + z2

1− z

1

k2
T

dσ(0)(ka) + non singular

Again the collinear (kT → 0) and soft (z → 1, with kT → (1− z)k̂T )
divergences. They arise when parton a goes on shell =⇒ the propagator
diverges

These IR divergences will cancel when adding virtual corrections



The quantity associated with the divergence depends only on parton

flavours and kinematics. At the LO, we have the following cases

q → q(z)g(1− z) =⇒ Pqq(z) = CF

1 + z2

1− z

g → q(z)q̄(1− z) =⇒ Pqg(z) = TR

(

z2 + (1− z)2
)

q → g(z)q(1− z) =⇒ Pgq(z) = CF

1 + (1− z)2

z
= Pqq(1− z)

g → g(z)g(1− z) =⇒ Pgg(z) = CA

(

z

1− z
+

1− z

z
+ z(1− z)

)

CF =
4

3
, CA = 3 , TR =

1

2

which are the (unsubtracted) Altarelli-Parisi splitting kernels



In summary

I When considering perturbative corrections, IR divergences appear

I The residues of the IR divergences are independent of the production

process, and can be easily computed

I Certain observables are finite, ie insensitive to the IR sector. For this to

happen, real and virtual contributions to the perturbative corrections

must both be considered at the NLO

I Perturbative corrections are larger than in QED, but still under control;

a pQCD program makes sense



Consider now the case a process with an initial-state hadron: DIS

We know already the leading order: it’s Feynman parton-model formula

dσep(K) =
∑

q

∫

dxfq(x)dσeq(xK)

with dσeq the LO cross section for eq → eX

Following what done before, we consider NLO corrections to dσeq
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dσR + dσV =
αS

2π

∫

dk2
T
dz CF

1 + z2

1− z

1

k2
T

(

dσ(0)(zka)− dσ(0)(ka)
)

Finite for z → 1 (soft), but divergent for kT → 0 (collinear)!

The real kinematic is not degenerate with the virtual one in the collinear

limit. This does not happen in the case of final-state emissions

Tentative conclusion: the parton model does not survive

radiative corrections

If so, pQCD can only be used for final-state hadrons

But there is a way out, which implies replacing the naive parton model by
its QCD equivalent, the factorization theorem

Before going into that, a bit of notation



Plus distributions

Redefine the qq Altarelli-Parisi kernel as follows (a distribution)

P (z) = CF

(

1 + z2

1− z

)

+

This notation introduces the “plus prescription”:
∫ 1

0

dzh(z)(g(z))+ =

∫ 1

0

dz(h(z)− h(1))g(z)

The NLO corrections to the parton cross section can therefore be written in

a much more compact form

dσR(ka) + dσV (ka) =
αS

2π

∫

dk2
T

k2
T

dzP (z)dσ(0)(zka)

The + reminds to subtract the z = 1 singularity ⇐= includes part of the

virtual corrections



Recovering the parton model

Exclude the collinear divergence with a cutoff µ0 � Q. Inserting the
partonic cross section into the parton model we get after the kT integration

dσ(NLO)(K) =
αS

2π
log

Q2

µ2
0

∫

dydzf(y)P (z)dσ(0)(yzK)

and with some algebra

dσ(K)≡ dσ(0)(K) + dσ(NLO)(K) =

∫

dyf̂(y, µ2, µ2
0)dσ̂(yK, µ2, Q2)

with µ0 � µ ∼ Q

f̂(y, µ2, µ2
0) = f(y) +

αS

2π
log

µ2

µ2
0

∫ 1

y

dz

z
P (z)f(y/z)

dσ̂(K, µ2, Q2) = dσ(0)(K) +
αS

2π
log

Q2

µ2

∫ 1

0

dzP (z)dσ(0)(zK)

Note: it is f̂ that is usually denoted by f



It is now manifest that the divergence is independent of the process

(as for final-state emissions). Consequences

� PDFs acquire a dependence upon mass scales: scaling violations

� PDFs cannot be expanded in perturbation theory

� Parton cross sections do have a perturbative expansion

The key assumption: Nature will kill the log µ0 divergence in the PDFs

(smearing typical of long-distance phenomena). We cannot compute PDFs,

but we can extract them from data

Parton model is formally recovered. An all-order proof of these
QCD-improved formulae gives a factorization theorem
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2 = x

∑

f

e2(f)
[

q(f) + q̄(f)
]

+ O(αS)

An excellent fit already at the NLO



If one derives the PDFs wrt the hard scale µ

∂f̂ (H)(y, µ2, µ2
0)

∂ log µ2
=

αS

2π

∫ 1

y

dz

z
P (z)f̂(y/z, µ2, µ2

0) +O(α2
S
).

The cutoff dependence is entirely in f̂ =⇒ sensible to assume that the

r.h.s. is the first order of a well-behaved perturbative expansion

One therefore arrives at the Altarelli-Parisi equations (1977), being careful

enough to include all possible splitting types

∂f̂a

∂ log µ2
=

∑

b

Pab ⊗ f̂b

Pab = αSP
(0)
ab + α2

S
P

(1)
ab + α3

S
P

(2)
ab + ...

I introduced another frequently used notation

f = g ⊗ h ⇐⇒ f(x) =

∫ 1

0

dydzδ(x− yz)g(y)h(z)



Note: the necessity of considering all splitting types is a consequence of
perturbative corrections. The LO diagram
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History of AP kernels

I P
(0)
ab : Altarelli, Parisi (1977)

I P
(1)
ab : Curci, Furmanski, Petronzio (1980)

I P
(2)
ab : Moch, Vermaseren, Vogt (2004)

The calculation of P
(2)
ab is the toughest ever performed in perturbative QCD,

with 106 lines of dedicated algebraic code, and 20 man-year of work

• One loop =⇒ 18 Feynman diagrams

• Two loops =⇒ 350 Feynman diagrams

• Three loops =⇒ 9607 Feynman diagrams

We are on the right track for an exact determination of PDFs at the NNLO



Determination of PDFs

Key ingredients: factorization theorems and AP equations. Then (in Mellin

space, where convolutions become ordinary products)

σdata = fσth =⇒ f = σdata/σth

σdata = (f1f2)σth =⇒ (f1f2) = σdata/σth

� Parametrize PDFs at a small scale Q0 = 1− 4 GeV

xf(x,Q0) = Axδ(1− x)η(1 + ε
√

x + γx)

� Impose momentum conservation

∑

a

∫ 1

0

dxxfa(x,Q0) = 1

� Evolve PDFs to relevant Q and compute σth

� Fit to data



Summary on pQCD

I We are able to describe some aspects of a world of hadrons in terms of

quarks and gluons

I The perturbative machinery works, if supplemented by non-perturbative

inputs (PDFs)

I Intuitive ideas (parton model and factorization) survive in QCD, at the

price of certain complications

This framework must be able to stand the challenge posed by data, and we

can now say that it does it in an excellent way – the days of QCD tests are

over; precision physics is possible

We can therefore confidently tackle the problem of predictings SM
processes at the LHC. Which remains a very difficult problem...



A “typical” pp event

H → ZZ → 4µ as simulated by ATLAS

I Straight, dashed lines: µ’s, i.e. the signal

I The rest: a big mess, due to the fact that hadrons are complicated
objects



A complete description must account for two ingredients:

1) the hard process: all the high-pT stuff, plus particles at small

relative pT or with small energies

2) the rest: this is generally low-pT stuff, and includes

• the underlying event;

• the pile-up, ie other pp collisions

Truth be told, there’s no unambiguous separation between 1) and 2),

since to a certain extent it is always definition dependent



A complete description must account for two ingredients:

1) the hard process: all the high-pT stuff, plus particles at small

relative pT or with small energies

2) the rest: this is generally low-pT stuff, and includes

• the underlying event;

• the pile-up, ie other pp collisions

Two different approaches

� Event Generators: aim at giving a description as realistic as possible,

including all the details of 1) and 2)

Examples: HERWIG, PYTHIA, ARIADNE, ...

� Cross Section Integrators: don’t include 2), and are only able to give

predictions for infrared-safe observables resulting from 1)

Examples: MCFM, ResBos, ...



A bit of terminology:

� Event Generators are frequently called Parton Shower Monte Carlos –

not really correct, but not wrong either (we’ll see why)

� Cross Section Integrators are called Monte Carlos (by theorists) – this is

due to the fact that they use numerical monte carlo methods to carry

out the necessary integrations



For both Event Generators and Cross Section Integrators, the simulation of
the hard process proceeds schematically as follows

hadronization

radiation
Subprocess

Hard Hard
Process

I Hard subprocess: only large-pT particles, parton-level. Two partons

pulled out of the incoming hadrons scatter and produce few (2–6)

particles

I Radiation: adds more partons. Equivalent to considering higher-order

corrections in perturbative QCD

I Hadronization: converts incoming partons into scattering hadrons, and

outgoing partons into observed particles



Strategies

I For Hadronization

1 Use factorization theorems −→ Cross Section Integrators

2 Use phenomenological models at mass scales where pQCD is not

applicable −→ Event Generators

I For Higher-order Corrections

1 Compute exactly the result to a given order in αS

2 Estimate the dominant effects to all orders in αS

Cross Section Integrators may implement 1, 2, or a combination of the

two. Event Generators always implement 2, possibly combined with 1



Summary so far

� It is convenient to separate high- from low-pT phenomena

� High-pT (ie hard) processes are predicted, low-pT ones are

modeled (and fitted to data)

� Cross Section Integrators will neglect the problem of low-pT

stuff if not associated with high-pT particles

� Event Generators and CSIs both start from simulating a

hard subprocess. They differ in the way radiation and

hadronization are described



Cross Section Integrators

Keep in mind that

I CSIs do a good job in dealing with the hard process, computed using

perturbative techniques

I CSI are basically parton-level computations

I Hadrons in the initial/final state are obtained by convoluting parton

results with PDFS/fragmentation functions

I Unweighted unbiased events are in general not available beyond LO

CSIs can be broadly divided into two classes (which can be combined)

I Fixed-order (eg MCFM) ←− exact to some αk
S

I Resummation (eg ResBos) ←− dominant effects to all orders in αS



The making of the hard process with CSIs

sα

Subprocess
Hard

order

Resummed

Fixed

Matched
hadrons

Incoming Outgoing
hadrons

in

contributions

exact

dominant
hadronization

hadronization

PDFs

PDFs



Convolution with PDFs

The master formula is always the factorization theorem

dσH1H2
(P1, P2) =

∑

ij

∫

dx1dx2f
(H1)
i (x1, µ

2)f
(H2)
j (x2, µ

2)

× dσ̂ij(x1P1, x2P2; αS(µ2), µ2)

In order to obtain a theoretical prediction, one computes dσ̂ij, then uses

the formula above taking the PDFs from available repositories?

The classification of CSIs is equivalent to the classification of the

short-distance parton cross sections dσ̂ij

Thus typically one deals with parton cross sections, understanding the
convolution with the PDFs

? or to fit PDFs to data



Hadronization (fragmentation)

The idea: partons produced in the hard collision move fast away from each

other. Each of them will eventually pick up (at large pT ) the missing colour

and flavour from the vacuum to create an observable hadron

Example: b hadroproduction. The single-inclusive pT spectrum of the

b-flavoured hadron is:

dσ̂ij→Hb

dpT (Hb)
=

∫

dz

z
Db→Hb(z, ε)

dσ̂ij→b

dpT(b)
, pT (Hb) = zpT (b)

� dσ̂ij→Hb
is convoluted with the PDFs to get H1H2 → Hb

� The fragmentation function DQ→HQ is analogous to the PDFs: it

cannot be computed in pQCD, but is universal

� One tipically uses e+e− to fit the parameter(s) ε; the functional form in

z must be guessed (Peterson, Kartvelishvili,...)



The hard subprocess may be seen as a zero-order approximation in the

description of the hard process in CSIs

It is also useful to introduce in a simple manner:

I process kinematics

I candidate, weighted, and unweighted events

As an example, consider

H1H2 −→W + X

which gets contributions from the leading-order hard subprocesses

qq̄′ →W → eν



Kinematics of the hard subprocess

According to the factorization theorem

p1 = x1P1 , p2 = x2P2 , 0 < x1, x2 < 1

In the hadron c.m. frame (which is the lab frame)

p1 + p2 = Ebeam(x1 + x2, 0, 0, x1 − x2) , Ebeam =
√

S/2

The parton c.m. frame is thus boosted wrt the lab frame by

ycm =
1

2
log

(p1 + p2)
0 + (p1 + p2)

3

(p1 + p2)0 − (p1 + p2)3
=

1

2
log

x1

x2

If the system produced in the collision has an invariant mass M and
rapidity Y in the lab frame, Y = ycm and

(p1 + p2)
2 = M2 =⇒ x1x2S = M2

x1 =
M√
S

eY , x2 =
M√
S

e−Y



x on the horizontal axis gives the

kinematically allowed range for

the ratio of parton energy over

hadron energy, at fixed mass and

rapidity of the system produced

The picture is surprisingly accu-

rate, but not exact: QCD radia-

tion will change it

In the context of factorization

theorems, (x, Q2) are the argu-

ments of the PDFs



Hard subprocess events

A minimal and necessary information on the production process is given by

the lowest-order cross section

dσ(qq̄′ →W → eν) =
1

2ŝ
|A(qq̄′ →W → eν)|2 d cos θdφ

8(2π)2
,

Now sample the phase-space, ie pick up random values for the variables

(cos θi, φi) ⇐⇒ (kq + kq̄′ −→ ke + kν)

This defines a candidate event

Candidate events do not correspond to anything observable



A weighted event is a candidate event, augmented by the candidate event’s

cross section

Ei = (wi; cos θi, φi) , wi = VΦ
dσ

d cos θdφ
(cos θi, φi)

VΦ =

∫

d cos θdφ

Weighted events are still not observable – their distribution is not the one

observed in Nature, but that of the random number generation

However, by using their weights to fill histograms, one gets a faithful

representation of measured spectra. The simplest example is the total rate

〈w〉 = lim
N→∞

1

N

N
∑

i=1

wi =

∫

dσ

Weighted events can be used to predict observables



Unweighted events are the subset of candidate events which occur with the

same frequency as that observed in Nature

Such subset can be obtained with the hit-and-miss technique (also known
as Von Neumann method)

0) Scan the phase space and find an upper bound wmax for the cross section

VΦ
dσ

d cos θdφ
≤ wmax

1) For each candidate event (cos θi, φi) generate a random number r

2) If

wi

wmax
≥ r

keep the candidate event, else reject it

3) Iterate 1) and 2) N times



Through this procedure, unweighted events are distributed according to the

hard cross section, and can therefore be given equal weight

w =

∫

dσ

It is also common to set w = 1

Note that in order to get M unweighted events, one has to generate N

candidate events with

M ≤ N, ε =
M

N
≤ 1

where ε is called efficiency

The efficiency is basically a function of wmax and of the distribution of
the random numbers r. It is a figure of merit of the computation which
achieves unweighted event generation



In summary

I Weighted events: equal probability?, unequal weights

I Unweighted events: unequal probability, equal weights

p(e)
T
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T

? If candidate events are generated flat



From hard subprocess to hard process

Through the inclusion of hadronization effects and higher-order corrections,

the hard event is converted into the “physical” event, ie the best

approximation of what happens in the detector according to the chosen

method of computation

I More particles are present in the final state wrt the hard subprocess

Still a small number, say less than 10 for CSIs

I It gives the W something to recoil against, and thus pT (W ) > 0

Higher-order corrections, however, pose a problem

In the context of Cross Section Integrators, unweighted events do not

exist. They can be defined only by introducing unphysical cutoffs, which

bias observables

Unweighted physical events are only meaningful in Event Generators



Summary on CSIs

� Aim at giving an accurate description of hard processes

� Parton-level results (except for fragmented partons).

Small final-state multiplicities (< 10)

� Unsuited for detector simulations. Best tools for “precision”

tests, PDF extractions, αS measurements

� May incorporate exact perturbative results up to αk
S

−→ Fixed-order CSIs

� May incorporate approximate perturbative results to all αn
S

−→ Resummed CSIs


