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Summary of lecture 3

� Fixed order: lots at NLO, a few at NNLO

� Highly-automated generation of tree-level diagrams

� High-accuracy resummed computations available for a few

key observables

� Resummed and fixed-order results are complementary

� PDFs with errors must be considered for serious assessment

of systematics. Computing intensive

� Progress being made in (semi)-numerical approaches to

loop computations, resummations



Event Generators

Remind that an Event Generator aims at giving a complete description of collision

processes

The core of Event Generators is the Parton Shower mechanism, which serves two main

purposes:

� To provide estimates of higher-order corrections that are enhanced by

large kinematic logarithms

� To generate high-multiplicity partonic states which can readily be

converted into the observed hadrons

The Parton Shower is built on the same concept as resummations:
logarithmically dominant contributions to the cross section are ”universal”.
Power-suppressed and finite terms are neglected

Parton Showers are more flexible than (analytical or numerical) resummation results.

This comes at a price, since more approximations need be made



The problem

I A lot of physics at the LHC will involve many-jet events,

and processes with large K factors

I Monte Carlos cannot give sensible descriptions of many-jet

events, and cannot compute K factors

I Although Monte Carlos should not be seen as discovery

tools, these issues must be addressed for a good

understanding of LHC physics



Event Generators in a nutshell

I Infinite number of dominant Feynman diagrams

Generate high-multiplicity parton final state: shower

I Models for hadronization, underlying event

Convert partons into incoming and outgoing hadrons

I PDG information embedded

Used to decay particles with correct branching ratios

Let’s discuss the Parton Shower



Before going into that, let me stress that the problem of the sensible

generation of the underlying event is a serious one, owing to

I its importance for all kind of physics simulations

I the still-poor theoretical understanding of its mechanisms

The process of checking the predictions of and of improving the models for

the underlying event will start immediately after the LHC turn on

There is a lot of ongoing activity on this issue, which I won’t report



Let’s start by ignoring the problem of soft singularities

Collinear kinematics
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Work in axial gauges
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t
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2π
Pba(z)

as we already know from fixed-order and resummed computations

In the phase space, φ can be conveniently identified with the azimuthal
angle between the plane of branching and the polarization of a



It is easy to iterate the branching process (splittings are called branchings in

this context)

a(t) −→ b(z) + c , b(t′) −→ d(z′) + e

dσ̄N+2 = dσ̄N

dt

t
dz

dt′

t′
dz′
(αS

2π

)2

Pba(z)Pdb(z
′)

This is a Markov process, ie a random process in which the probability of

the next step only depends on the present values of the random variables.

In formulae

τ1 < . . . < τn =⇒

P
(

x(τn) < xn|x(τn−1), . . . , x(τ1)
)

= P (x(τn) < xn|x(τn−1))

In our case, the probability of each branching depends on the type of
splitting (g → gg, ...), the virtuality t, and the energy fraction z



Following a given line in a branching tree, it is clear that enhanced
contributions will be due to the strongly-ordered region

Q2 � t1 � t2 � . . . tN � Q2
0

σN ∝ σ0α
N
S
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dt1
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. . .
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N !
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Denote by

Φa[E, Q2]

the ensemble of parton cascades initiated by a parton a of energy E
emerging from a hard process with scale Q2. Also, denote by

∆a(Q2
1, Q

2
2)

the probability that a does not branch for virtualities Q2
2 < t < Q2

1



With this, it is easy to write a formula that takes into account all the
branches in a branching tree:

Φa[E, Q2] = ∆a(Q2, Q2
0)Φa[E, Q2

0]

+

∫ Q2

Q2

0

dt

t
∆a(Q2, t)

∑

b

∫

dz
αS

2π
Pba(z)Φb[zE, t]Φc[(1− z)E, t]

which has an immediate pictorial representation

a
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Now simply impose that no information is lost during the parton shower:
the sum of all the probabilities associated with the branchings of partons
must be one. Therefore

1 = ∆a(Q2, Q2
0) +

∫ Q2

Q2

0

dt

t
∆a(Q2, t)

∑

b

∫

dz
αS

2π
Pba(z)

which can be solved:

∆a(Q2, Q2
0) = exp

(

−

∫ Q2

Q2

0

dt

t

∑

b

∫

dz
αS

2π
Pba(z)

)

Note

I This Sudakov form factor looks familiar −→ resummation

I Some virtual corrections must be included, otherwise unitarity couldn’t

be imposed!

It’s clear that a Sudakov must appear: resummation and parton shower
described the same physics



Double logs

Keep in mind: this treatment is valid only in the collinear limit. Choices
which affect the behaviour away from this limit are equivalent

For example, the choice of the shower variable t affects the double-log
structure

t = z(1− z)θ2E2 (virtuality) =⇒
1

2
log2 t

E2

t = z2(1− z)2θ2E2 (p2
T
) =⇒ log2 t

E2

t = θ2E2 (angle) =⇒ log
t

Λ
log

E

Λ

owing to soft divergences. In MC’s they are easy to locate:

z → 1 =⇒ Pqq, Pgg ∼
1

1− z

So the study of soft emission may give extra information on the proper
choice for t



Soft emissions

Using soft-gluon techniques (Bassetto, Ciafaloni, Marchesini)

dσ̄N+1 = −dσ̄N

dEi

Ei

dΩi

2π

αS

2π

∑

jk

Tj ·Tk

ζjk

ζijζik

Gluon i has collinear singularities to j and k

ζab =
ka · kb

EaEb

= 1− cos θab

Ta = 〈ca|T
a colour− charge operator

T
2
g = CA , T

2
q = CF

When iterating this formula to the next emission, one gets

I A non-positive definite expression (owing to interference)

I A non-Markovian structure (step 2 depends on step 1 and 0)



� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

i

j

k

Collinear

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

i

j

k

Soft



Manipulate the radiation function

Wjk =
ζjk

ζijζik

= W
[j]
jk + W

[k]
jk

W
[j]
jk =

1

2

(

ζjk

ζijζik

+
1

ζij

−
1

ζik

)

This decomposition has two remarkable properties

I It disentangles the collinear singularities

I It has angular ordering

∫ 2π

0

dφijW
[j]
jk =

{

1/ζij ζij < ζjk

0 ζij > ζjk

Angular ordering is a manifestation of (destructive) interference effects
present in gauge theories – eg in QED



Angular ordering implies that after azimuthal average we have

dσ̄N+1 = −dσ̄N

dEi

Ei

αS

2π

∑

jk

2Tj ·Tk

∫ ζjk

0

dζij

ζij

This looks promising: may be interpreted as

. . . −→ j + k ; j −→ i + j ′ . . .

The process is fully symmetric in j ←→ k

In order to study the emission pattern in more details, we must at least
consider the next branching



Consider the emission of a soft gluon from the colour sin-

glet formed by the three partons i, j and k

The radiation pattern will be obtained by attaching a soft

gluon to the three external legs i, j, k

Wijk = −Ti ·TjWij −Tj ·TkWjk −Ti ·TkWik

Assuming that θmk � θij one gets

Wijk = T
2
i W

[i]
ij + T

2
jW

[j]
ij + T

2
kW

[k]
km + T

2
mW

[m]
km Θ(θmg > θij)

I Inside the cone (ij), the gluon is emitted by two independent

charges T
2
i and T

2
j

I Outside of this code, the gluon cannot resolve i and j, and only

”sees” T
2
m = (Ti + Tj)

2

=⇒ A Markov structure has emerged: (ijk) ≡ ((i + j)k) + (ij)



Indeed, we can obtain

Wijk = T
2
i W

[i]
ij + T

2
jW

[j]
ij + T

2
kW

[k]
km + T

2
mW

[m]
km Θ(θmg > θij)

as a two-step branching process. First, attach the soft gluon to
the pair (mk), ie

T
2
kW

[k]
km + T

2
mW

[m]
km

Note that m is on shell!. Next, after the branching m→ ij with θij < θmg,
attach the soft gluon to the pair (ij), ie

T
2
i W

[i]
ij + T

2
jW

[j]
ij

θ
θ

θ

1

2

3

Angular ordering

θ1 > θ2 > θ3



Coherent branching

What done above can be combined with the collinear branching stuff. One

arrives at a coherent branching formalism, which correctly incorporates

collinear and soft enhancements to all orders

The most straightforward approach it that of replacing the shower variable

t with ζ = 1− cos θ, and impose ζn+1 < ζn. Iterated cross section formulae

now read

dσ̄N+1 = dσ̄N

dζ

ζ
dz

αS

2π
Pba(z)

In practice, to take into account emission from non-zero-mass lines, it’s

more convenient to use as shower variable for a→ bc (HERWIG)

Q2
a = E2

aζa ; ζa > ζb =⇒ Q2
b < z2

bQ
2
a

There are non-accessible kinematic regions (dead zones)



Coherence can be seen in data



3 very successful implementations

HERWIG PYTHIA ARIADNE

t = E2ζ t = M 2 t = p2
T

hardest not first hardest first hardest first

coherent coherence forced coherent

dead zones no dead zones no dead zones

ISR easy ISR easy ISR difficult

g → qq̄ OK g → qq̄ OK g → qq̄ difficult

Each has pros and cons: don’t be lazy, try to use more than one



Summary on Event Generators

0) Start from a leading order hard subprocess

1) Let initial- and final-state partons branch

2) Iterate 1) (ie shower) till reaching a small scale Q0

3) For final-state partons, use a model to convert partons into

hadrons; for initial-state partons, force further branchings

till valence flavours are generated, and fold with f(x,Q0)

4) Add low-pT stuff (underlying events, ...)



Troubles

As in the case of resummed computations, the perturbative part of parton

shower is based on collinear/soft approximations

It is easier, however, to misuse an MC than a CSI implementing

resummation

Example: W hadroproduction. One may want to study not only W

properties, but also consider the accompanying jets

� Can’t do this with a CSI: it’s inclusive in W , jets are simply not there

� Can do it with an MC: the partons against which the W recoils are

available in the event record, and jets can be reconstructed

This is OK, if the jets are not too hard, and not too far from each other

But hard and well-separated jets can be generated by the MC – and no
warning is given that the corresponding cross section is totally wrong



It is left to you to determine
whether you are using an MC
outside the range of validity of
its approximation. It is a very
common mistake to abuse of
this freedom



We have seen how to improve CSI with resummation, by matching them

with fixed-order results. In order to do this, one needs

� To identify the large logs in the cross section

� To remove from the fixed-order result those logs already present in the

resummed result

Unfortunately, this strategy will not work in the case of MC’s, since it is

observable-specific

However, the basic idea is the same: more information on
fixed-order results need be passed to the Event Generator



How to improve Monte Carlos?

The key issue is to go beyond the collinear approximation

=⇒ use exact matrix elements of order higher than leading

Which ones?

There are two possible choices, that lead to two vastly

different strategies:

I Matrix Element Corrections −→ tree level

I NLOwPS −→ tree level and loop



Matrix Element Corrections

Compute (exactly) as many as possible real emission diagrams before
starting the shower. Example: W production

. . . . . .

Then use the kinematics configurations generated in this way as initial
conditions for the shower

The idea: large-pT , well-separated partons will evolve into large-pT ,

well-separated jets

Problems

• Double counting (the shower can generate the same diagrams)

• The diagrams are divergent



The two problems are connected: the matrix elements diverge in the soft/collinear

regions, which are those “preferred” by showers

This suggests a (naive) solution: use some observable to decide if two partons are close

to each other or not. If not, use the matrix elements, otherwise use the parton shower

Simplest example: jet with cone algorithm
Close = in the cone
Far = outside the cone

Close =⇒ use PS

Far =⇒ use ME’s



How about this one?

There are other obvious problems

I Partons emitted from far away parton which re-enter the cone

I Relative weight of ME’s with different multiplicities unspecified

I What happens when changing cone size, or jet-finding algorithm?

The basic idea, however, is correct, and needs only be refined

I start discussing the approach of CKKW (Catani, Krauss, Kuhn, Webber),
originally formulated for e+e− and then extended to hadronic collisions



Definition of interparton distance

It is conveniently suggested by a jet-finding algorithm, which has nothing to

do with that used in the analysis. CKKW choose the kT algorithm, where

di = p2
Ti parton− beam distance

dij = min
(

p2
Ti, p

2
Tj

)

R2
ij parton− parton distance

R2
ij = (ϕi − ϕj)

2 + (ηi − ηj)
2

One then introduces a stopping value dini (typically, of O(10 GeV))

Two partons i, j are close to each other, or one parton i is close to the

beam (ie to an incoming parton), if

dij < dini , di < dini

If two partons are close, they can be recombined into one pseudo-parton.
By iteration, one arrives at a set of partons and pseudo-partons all far away
from each other



The prescription of CKKW

We are interested in p1 + p2 −→ X + many jets

1) Compute the probabilities

P (0)
n = σ(0)

n

/ N
∑

i=1

σ
(0)
i

with σ
(0)
n the tree-level n-jet cross section for kT -jets with resolution

scale dini; use αS = αS(dini)

σ
(0)
n ←− n-parton matrix elements, with partons separated by dini

2) Choose a multiplicity 0 ≤ n̄ ≤ N with probability P
(0)
n̄

3) Use the matrix elementsM(p1 + p2 → X + n̄ partons) to generate an

X + n̄ partons kinematic configuration

We have now an n̄ partons unweighted hard event



4) Cluster the n̄ partons using the kT -algorithm, and find the nodal values

d1 > d2 > . . . dn̄ > dini

at which 1, 2, . . . n̄ jets are resolved

The n̄-parton configuration can now be depicted as a branching tree, with successive

branchings at scales di

5) Apply a coupling reweighting factor

αS(d1)αS(d2) . . . αS(dn̄)
/(

αS(dini)
)n̄

≤ 1

Had we known the branching tree, we should have computed the ME’s with these couplings

6) Apply a Sudakov reweighting factor

∆(dini, di)
/

∆(dini, dj)

to each line from a node with scale di to the next node with scale

dj < di. If the line is external, dj = dini



7) Unweight again the hard configuration, ie accept it if the product of

coupling and Sudakov reweighting factors is larger than a random

number. Otherwise, start again from 2)

8) The accepted configuration is the initial condition for the parton

shower. Branchings a→ bc in the shower must be vetoed if dbc > dini

When an emission is vetoed it does not take place, but the shower scale for the next

branching is recomputed as if the branching had occurred



In words: what happens in CKKW

� A jet clustering algorithm is used to separate the ME-dominated from

the PS-dominated regions

� In the ME-dominated regions the ME’s are corrected, as if they were

generated (kinematically) by the PS. The Sudakov factors make sure

that a PS would not emit extra partons wrt those entering the ME’s

� In the PS-dominated regions the PS does its job, but it’s prevented,

owing to the veto, from emitting large-pT , well-separated partons

If one goes through this considerable mess, he/she would like to be sure
that in the end the predicted IR-safe observables will independent of the
choice of the jet-clustering algorithm, and of dini



Accuracy in CKKW

A formal statement has been given only for jet observables in e+e−

collisions, but is believed to be correct also for hadronic observables

I The separation of the ME- and PS-dominated regions introduces a

dependence

σn ∼ αn−2
S

∑

k

akα
k
S
log2k dini

s

in the n-jet cross section

I At the end of the CKKW procedure, this is reduced to

σn ∼ αn−2
S

(

(

dini

s

)a

+
∑

k

bkα
k
S
log2k−2 dini

s

)

ie it is cancelled to NLL accuracy

Is this good enough?



Test case: W+jets −→ pT(W )

� Here Qcut ≡ dini

� The larger dini, the smaller the impact of high-multiplicity ME’s

� A 20% bias is acceptable, and can be used to tune to the data



Test case: W+jets −→ kT(n)

� kT (n) is the value of the resolution scale at which an n-jet

configuration becomes an (n− 1)-jet one

� The dependence on dini is of the same order as that for pT (W )

� Clear improvements wrt standard parton showers (black vs red lines)



CKKW is an interpolation procedure between a PS and the ME’s. It defines

a fremework, but there is a lot of freedom left, which can be used to reduce

unphysical biases on observables

I Clustering algorithm and momentum-recombination scheme

I Sudakov definitions

I Scale choices

I Corrections due to N <∞ (highest-multiplicity ME)

Never forget that the dini dependence can be reduced but
not eliminated. So make sure, before embarking in

extensive physics studies, that dini is properly chosen, and
the biases are small



An alternative approach: MLM matching

Proposed by Mangano. This is now used in ALPGEN

1) Generate hard unweighted events with the ME’s, imposing

ET > Emin
T

, Rij > Rmin

2) Define a branching-tree structure as done in CKKW, but using colour

flows extracted from the ME calculations

3) Compute αS at the nodal values found in 2), but do not apply any

Sudakov reweight factors

4) Shower the hard event, without applying any veto; when done, find jets

using a cone algorithm with (Emin
T

, Rmin)

5) Require jets be matched to hard partons. Events with more jets than

hard partons are rejected, except for the highest-multiplicity ME’s



CKKW vs MLM for W+jets

� Differences in leading-jets distributions slightly larger than for pT (W )

� Differences may be due to the matching algorithm, the shower

(SHERPA for CKKW, HERWIG for MLM), or a combination

of the two



Summary on Matrix Element Corrections

� Various approaches and implementations on the market; the use of

standard PSMC for multi-jet studies cannot be justified any longer

� Overall, existing approaches are robust, and lead to tolerably small

dependence on unphysical parameters, if these are cleverly chosen

� There are discrepancies among the different approaches; there is

a lot of flexibility in implementation details

� Tuning to data is strongly recommended, and anyhow necessary to

figure out the correct normalization: these are LO QCD computation!

Matching parameter systematics must be assessed

Try different codes and implementations



How to improve Monte Carlos?

The key issue is to go beyond the collinear approximation

=⇒ use exact matrix elements of order higher than leading

Which ones?

There are two possible choices, that lead to two vastly

different strategies:

I Matrix Element Corrections

I NLOwPS

I now discuss the second option: NLOwPS



NLOwPS

Compute all the NLO diagrams (and only those) before starting the shower.
Example: W production

. . . . . .

Then use the kinematics configurations generated in this way as initial
conditions for the shower

Problems

• Double counting (the shower can generate some of the same

diagrams)

• The diagrams are divergent

The problems are almost identical to those encountered in MEC.

The solution, however, is completely different



Why NLO corrections?

Among the many good reasons, let me mention those that are likely to have the largest

impact on phenomenology

I K factors: the only way to compute them consistently (i.e., no

bin-by-bin reweighting), and to use this information in detector

simulations

I Shapes of observables do have NLO corrections =⇒ impact on

acceptances and physics studies in general

I Theoretical systematics: scale dependence can be computed – this

procedure is either meaningless or very difficult to perform with

standard Monte Carlos

I Predictive power: the MC can become a tool for “precision” physics



NLOwPS versus MEC

Why is it difficult to incorporate matrix elements into MC’s?

The problem is a serious one: KLN cancellation is achieved in standard
MC’s through unitarity, and embedded in Sudakovs. This is no longer
possible: IR singularities do appear in hard ME’s

So the trick used in MEC is: avoid IR singularities cutting them off by
hand, and correct for the bias so introduced. This is unavoidable, since only
virtual diagrams can cancel the divergences of real matrix elements

But we do want to include virtual diagrams into NLOwPS. This makes all
the difference wrt MEC. We expect that:

I There is no need to introduce cutoffs

I An increased complexity in the computations



NLOwPS is a relatively new field

Although somewhat undermanned, there is a lot of ongoing activity

I First hadronic code: Φ-veto (Dobbs, 2001)

I First general solution: MC@NLO (SF, Webber, 2002)

I Automated computations of ME’s: grcNLO (GRACE group, 2003)

I Absence of negative weights: POWHEG (Nason, 2004)

I Showers with high log accuracy in φ3
6 (Collins, Zu, 2002–2004)

I Proposals for e+e− → jets (Soper, Krämer, Nagy, 2003–2005)

I SCET (Bauer, Schwartz, 2006)

I Use of dipoles (Giele, Kosower, Skands, in progress)

Only MC@NLO and, to a more limited extent so far, POWHEG, have resulted in

ready-to-use computer programs



Matching NLO with MC: NLOwPS

What do we want? Let’s define it:

� Total rates are accurate to NLO

� Hard emissions are treated as in NLO computations

� Soft/collinear emissions are treated as in MC

� NLO results are recovered upon expansion of NLOwPS results in αS.

In other words: there is no double counting in NLOwPS

� The matching between hard- and soft/collinear-emission regions is

smooth

� The output is a set of events, which are fully exclusive

� MC hadronization models are adopted

Note: in general, negative-weight events can be generated



NLO and MC computations

NLO cross section (based on subtraction)

(

dσ

dO

)

subt

=
∑

ab

∫

dx1 dx2 dφn+1 fa(x1)fb(x2)×

[

δ(O −O(2→ n + 1))M
(r)
ab +

δ(O −O(2→ n))
(

M
(b,v,c)
ab −M

(c.t.)
ab

)

]

←−

←−
MC

FMC =
∑

ab

∫

dx1 dx2 dφn fa(x1)fb(x2) F
(2→n)
MC M

(b)
ab

� Matrix elements −→ normalization, hard kinematic configurations

� δ-functions, F
(2→n)
MC ≡ showers −→ observable final states



NLO + MC −→ NLOwPS?

Naive first try: use the NLO kinematic configurations as initial conditions for showers,

rather than for directly computing the observables

� δ(O −O(2→ n)) −→ start the MC with n “hard” emissions: F
(2→n)
MC

� δ(O −O(2→ n + 1)) −→ start the MC with n + 1 “hard” emission: F
(2→n+1)
MC

Fnaive =
∑

ab

∫

dx1 dx2 dφn+1 fa(x1)fb(x2)×

[

F
(2→n+1)
MC M

(r)
ab + F

(2→n)
MC

(

M
(b,v,c)
ab −M

(c.t.)
ab

)

]

It doesn’t work:

I Cancellations between 2→ n + 1 and 2→ n contributions occur after the shower:

hopeless from the practical point of view; and, unweighting is impossible

I (dσ/dO)naive − (dσ/dO)NLO = O(αS). In words: double counting



MC@NLO: formalism (SF, Webber (2002))

The naive prescription doesn’t work: MC evolution results in spurious NLO terms

−→ Eliminate the spurious NLO terms “by hand”: MC counterterms

The generating functional is

FMC@NLO =
∑

ab

∫

dx1 dx2 dφn+1 fa(x1)fb(x2)×

[

F
(2→n+1)
MC

(

M
(r)
ab −M

(MC)

ab

)

+

F
(2→n)
MC

(

M
(b,v,c)
ab −M

(c.t.)
ab +M(MC)

ab

)

]

M(MC)

F(ab) = F
(2→n)
MC M

(b)
ab +O(α2

S
αb

S
)

There are two MC counterterms: they eliminate the spurious NLO terms due to the

branching of a final-state parton, and to the non-branching probability



Let’s have a look at the weight functions

wH =M
(r)
ab −M

(MC)

ab

wS =M
(b,v,c)
ab −M

(c.t.)
ab +M(MC)

ab

These are finite (i.e. don’t diverge) for any phase-space point!

The MC provides local, observable-independent,
counterterms =⇒ greater numerical stability, unweighting

possible

By solving the problem of double counting, one also cancels the
singularities at the level of hard matrix elements (i.e., with no reference to
a specific observable). Configurations with different final states can then be
showered independently



MC@NLO results

� Implements several hadroproduction processes; used by experimenters

� Left plot: we have another predictive way to show that b production is

under control

� Excellent agreement with matched analytic computation of formally

higher log accuracy



POWHEG (Nason (2004))

The proposal stems from the following theorem

A shower can be defined which has the largest-pT emission at
the first branching, and is equivalent (to LL accuracy) to the
angular-ordered shower

Such a shower goes through the following steps

I Do the first branching as usual. It will define branching variables

z and t0 < t < tini, and a pT

I Do a shower from each of the two legs from the first branching, with

upper scales z2t and (1− z)2t, and veto all emissions with a relative

transverse momentum larger than pT (vetoed showers)

I Do a further pT -vetoed shower, with upper scale tini and lower scale t

(vetoed truncated shower) −→ restores coherence



Proposal for POWHEG

The basic idea builds upon the previous theorem

Exponentiate the full real corrections into a Sudakov, and use
that for the first branching. Then proceed as before, with
vetoed and vetoed truncated showers

� MC must be capable of handling vetoed truncated showers;

not the case at the moment

� May use a separate package for the vetoed truncated showers

� Beyond-LL structure changed: need for re-tuning?

� |MC@NLO-pMC@NLO|=O(α2
S
) ←− how large α2

S
terms?

Proof-of-concept for pp→ ZZ (Nason, Ridolfi), without vetoed truncated showers.

General formulation and vetoed truncated showers under way (SF, Nason, Oleari)



� ZZ hadroproduction now

implemented in POWHEG

� Vetoed-truncated showers

not yet available

� Should not matter much

for inclusive observable in

ZZ: excellent agreement

with MC@NLO

General formulation and other implementations are under way



Summary on NLOwPS

� Event Generators including the typical benefits of NLO computations

now exist

� Sensible predictions for total rates and large-pT tails; it is meaningful to

study scale dependence in a realistic experimental environment

� Absence of matching parameters, matching systematics (which may be

introduced if needed). Increased predictive power wrt MEC

� Multileg NLO results are difficult to obtain. At present, MEC and

NLOwPS are therefore complementary

� Next steps: more NLOwPS formalisms, extension of CKKW-like

procedures at the NLO



Conclusions

This is the decade of hadron colliders – and the most exciting time in

high-energy particle physics after 1984. We can’t tell what lies ahead, and

thus we must have reliable predictions for what we believe we know

QCD theorists have responded remarkably well, with major breakthroughs

in the past few years (many topics seemed unrealistic 5 years ago)

I’ve tried to give you an overview on selected topics which will presumably

have a strong impact on the LHC programme

I Fixed-order computations at tree-level, NLO and NNLO

I Resummed and matched computations

I PDFs

I Monte Carlos of the new generation



There are of course so many things I did not even mention

I Twistors

I Soft and semihard physics

I Small-x physics

I Quarkonia (NRQCD)

I Power corrections

I Diffraction



... therefore: are we ready?

There is a lot of work to be completed, which is supposed to be relevant for

LHC physics, both in the perturbative and non-perturbative domains

But a lot has already been achieved and, more importantly, I am confident

that, thanks to what we have understood, we’ll be able to solve the

problems which is reasonable to expect from the LHC



Thanks for your attention

Good luck with your searches...


