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Lecture 1: The large picture
observations, cosmological principle, Friedmann model, Hubble diagram, thermal history

LLecture 2: From quantum to classical
cosmological inflation, isotropy & homogeneity, causality, flatness, metric & matter fluctuations

Lecture 3: Hot big bang

radiation domination, hot phase transitions, relics, nucleosythesis, cosmic microwave radiation

Lecture 4: Cosmic structure
primary and secondary cmb fluctuations, large scale structure, gravitational instability

Lecture 5: Cosmic substratum
evidence and candidates for dark matter and dark energy, direct and indirect dm searches



History of the Universe

LHC dipole RHIC-event (STAR) Sky from WMAP Hubble Deep Field
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Shortcomings of ACDM model

observed, but not explained:

e isOotropy and homogeneity

e spatial flatness

o (Op ~ O2m today



Horizon problem

¢,(t) past causal horizon today
¢¢(t) future causal horizon A

(gp/ef)(zdec) ~ /Zdec > 1 (zdec >~ 1100) ohoton

decoupling I
103 causally disconnected patches

have the same temperature. Why? singularity



Flatness problem

Why is Qg = O(1)7?

(1 +2)~1 matter dominated

1 -02)] =I1-< { (14 2)~2 radiation dominated

= |1 — Q(2gec)| = 0(1073) , |1 —Q(2guT)| = O(107°9) (aeur ~ 10%)



Singularity problem

singularity (a — 0;€ — Mg) exists, if ¢+ 3p > 0
(strong energy condition; satisfied in matter and radiation dominated universe)

proof: a < 0 from

o
—3— =47G(e + 3p) (equation of geodesic deviation)
a

if e4+3p>0. Thus, a — 0 fort < tgy. e

N.B. today’s cosmological constant cannot change this conclusion

Is quantum-gravity necessary to solve the problems above?



Cosmological inflation

epoch of accelerated expansion in the very early Universe
Starobinsky 1979: Guth 1980

a>0 = e+3p<O0

since —3% = 47G (e + 3p)

number of e-foldings: N =Ing = [ Hdt



Vacuum energy

e of vacuum is constant, thus

dU = edV = —pdV = p = —¢
equivalent to cosmological constant A = 8nGey

from a — %a = 0 and q; > O follows

a(t) = ajexp [\f% (t — ti)]

exponential growth

Hinr &~ /\/3

N = \/A/3(t = t;) ~ (mins/mp)?(t/tp)) > 1 typically



Causality and flatness

horizon problem is solved:
Ep/ﬁf ~ ZGUT exp(—N) <1
if N = Iaﬁ,1sz&15 > 70

flatness problem disappears:

during inflation

|11 — Q(t)| x exp(—2Hjnft)
after inflation

Q=14 O(exp[—2N])

if inflation lasts for
at least 70 e-foldings
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Inflation: Scenarios — History

Starobinskii 1979

Guth 1980

Linde 1982

Albrecht & Steinhardt 1982

Linde 1983

La & Steinhardt 1989
Linde 1993

R2-inflation (quantum gravity corrections)

old inflation (first order GUT transition)

never stops, because bubbles do not merge

new inflation (flat potential, slow roll)

needs special initial conditions

chaotic inflation (slow roll)

arbitrary V(¢), random initial conditions ;, ¢;

(hyper-)extended inflation (two scalar fields)
hybrid inflation (two scalar fields)



Chaotic inflation: slow roll Linde 1983

simple example V = \p?/4, A < 1 b o)

a single scale: Mp ~ 1019GeV Slowr:”
equations of motion: oscillation % 0
H2=3?\74TF2)(%¢2+V) T
¢+3Hp+V,,=0

generic initial conditions

at t ~ tp: @2 ~ M2 and V(g) ~ M2 = i ~ AN YA Mp > Mp

slow roll: motion of ¢ is slowed down quickly by the Hubble drag (H¢ > V)

= 162 <V and ¢ < —3H¢ = a(t) o exp(H[p(t)]t)

with H(p) ~ [87V ()/3MZ2]Y/2 and ¢(t) ~ ¢; exp[—(A\/67)/2tMp]



Chaotic inflation: end and heating up

Dolgov & Linde 1982; Abbott, Fahri & Wise 1982

inflation terminates at ¢ ~ Mp: ¢ oscillates around its minimum

coherent oscillations decay into other particles

e.g. Yukawa coupling 2g%vpx? to a bosonic particle x

Xk + 3Hxg + [k2h + m2 + g?ve()]xg = O

might be very efficient due to parametric resonance y; ~ exp(ut)
Traschen & Brandenberger 1990; Kofman, Linde & Starobinskii 1994

these decays produce entropy and (re)heat the Universe to Ty

T should be high enough to allow baryogenesis
(probably GUT scale; in any case Tyn > Thuc)



Kinematic considerations

(quantum) fluctuations of
energy density and metric

Fourier modes k = 27/
>‘ph = aA\

Aph < 1/H locally Minkowski
Aph > 1/H no causal physics
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Structure formation: quantum fluctuations

accelerated expansion provides energy to produce
classical fluctuations from vacuum fluctuations

5(n. ©) 1 d3k 1

y L) =— —

I a (2m)3/2\/2k
with &/0) = 0 and [&,&,] = 6(k — k') [n= [ dt/a(t) conformal time]

[ fr(n) exp(1kd) + h.c.]

/ 2_“_// —
fr + (k a)fk—o

subhorizon scales kpn = k/a > H: harmonic oscillator
superhorizon scales kpn < H: fr. ~ a rapid amplification of fluctuations

H(p)
27

rms amplitude at the moment kpp = H : dp(k=H) ~

power spectrum is almost scale-invariant (Harrison-Zel'dovich)



Structure formation: density perturbations

Chibisov & Mukhanov 1981; Hawking 1982; Guth & Pi 1982

fluctuations ¢ induce fluctuations in the metric
(o(n, ),y (n,T) ... metric potentials of longitudinal sector)

d82 = a2(77)[—(1 -+ 2¢)d772 -+ (1 — 2¢)da_3)2] (longitudinal gauge)
and in the energy density

. 1 2
de(n, T) = a—2(90’590’ —¢©'7P) + Vb
characterise them by a hypersurface-invariant quantity Bardeen 1989

. oe
S TE s S

conserved on superhorizon scales, if perturbations are isentropic (see lecture 4)




Primordial power spectra

harmonic oscillator leads to gaussian fluctuations,
characterised by two-point functions

def: power spectrum Pg(k) of some observable Q

(Q(B), Q(7) = / d(In k)jo(kr)k*Po(k)  and Py = K2FPo(k)

Qrms = /Pq is the root mean square amplitude in the interval (k, k + dk)

historic ansatz: scale-free power spectrum P, = Ac(k/k*)”_l
n = 1: scale-invariant Harrison-Zel’dovich, n — 1: spectral tilt



Density and metric fluctuations

Chibisov & Mukhanov 1981; Starobinsky 1980

prediction 2: existence of density fluctuations that are

. gaussian distributed

. coherent in phase (only growing mode)
close to scale-invariant (slow-roll models)
. isentropic (simplest models)

QO 0T O

prediction 3: existence of gravity waves with properties a, b and ¢

prediction 4: no rotational perturbations at £k < aH



Slow-roll inflation

attractor in many inflationary scenarios

dynamical (slow-roll) parameters: €,41 =dlIne,/dN and eg = Hj/H

€1 = dH Schwarz, Terrero-Escalante & Garcia 2001
M3 M3
1o T (VIV)?, e SR [(V/V)? -V V],

slow-roll inflation: |e,| < 1 Vn >0

density perturbations Py = %;42 (ao talnkt L2k 4. )

gravitational waves P, = 16H (bo + by In L+ 5_22 In2 kﬁ 4+ .. )

with a; = a;(e,), b; = b;(e,) and k. pivot scale at which e, are evaluated
Stewart & Lyth 1993: Martin & Schwarz 2000;
Stewart & Gong 2001; Leach, Liddle, Martin & Schwarz 2002



Interpretation of dynamical parameters

1 = dy > 0 measures constancy of Hubble scale during inflation,
i.e. ratio of kinetic to total energy density

if eo > 2e1: Kinetic energy density grows with time
false vacuum models (small field), toward the end of inflation
if O < en < 2e1: Kinetic energy density decreases with time
chaotic models (large field), toward the end of inflation
if eo < O:kinetic energy density decreases w.r.t. total energy density
hybrid models, some transition is needed to end inflation

hidden-exit inflation toward-exit inflation

Schwarz & Terrero-Escalante 2004




Scale of inflation and slow-roll parameters

CMB data from WMAP

0.03

from upper limit on tensor perturbations
- 0.02

log(e,)

and the amplitude of scalar perturbations:
H < 1.6x10% GeV =1.3x107>Mp
31 —0.05 0 005 01 g1 < 0.022

0.01

from deviation from scale-invariance:
—0.07 < e5 < 0.07
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Martin & Ringeval 2006



Summary of 2nd lecture

cosmological inflation explains
isotropy & homogeneity, causality, spatial flathess and
seeds for structure formation

inflationary parameters (slow-roll):
Hinf,81,€2,... or An—1,r= Ph/Pc,

at first order slow-roll approximation: n — 1 ~ —2¢1 —eo,r >~ 167

what is the fundamental physics of inflation?
what is it's scale?



