Quantum Chromo-Dynamics and high energy nuclear collisions

D. Kharzeev BNL

Quarks and the Standard Model

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

1/2 of all "elementary" particles of the Standard Model are not observable;

they are confined within hadrons by "color" interactions

Outline

- Quantum Chromo-Dynamics the theory of strong interactions
- QCD at high energies
- QCD at high temperatures
- A glimpse of RHIC results
- New facets of QCD at RHIC and LHC:
 - o Color Glass Condensate & thermalization
 - o (strongly coupled) Quark-Gluon Plasma
 - o topological effects at finite T

What is QCD?

QCD = Quark Model + Gauge Invariance

local gauge transformation:

$$q(x) \to \exp(i\omega_a(x)T^a) \ q(x),$$

$$\left[T^a, T^b\right] = if^{abc}T_c$$

QuickTime™ and a TIFF (Uncompressed) decompressor are peeded to see this picture

QCD and the origin of mass

Invariant under scale $(x \to \lambda x)$ and chiral Left \longleftrightarrow Right transformations in the limit of massless quarks

Experiment: u,d quarks are almost massless...

... but then... all hadrons must be massless as well!

Where does the "dark mass" of the proton come from?

QCD and quantum anomalies

$$\mathcal{L} = -\frac{1}{4}G^{a}_{\mu\nu}G^{a}_{\mu\nu} + \sum_{f} \bar{q}^{a}_{f}(i\gamma_{\mu}D_{\mu} - m_{f})q^{a}_{f};$$

Classical scale invariance is broken by quantum effects:

scale anomaly

$$\theta^{\mu}_{\mu} = \frac{\beta(g)}{2g} G^{\alpha\beta a} G^{a}_{\alpha\beta} + \sum_{q} m_{q} \bar{q}q$$

trace of the energymomentum tensor

"beta-function"; describes the dependence of coupling on momentum

Hadrons get masses coupling runs with the distance

Running coupling and renormalization group

QED:

Running coupling: (screening)

$$e^{2}(r) = \frac{e^{2}(r_{0})}{1 + \frac{2e^{2}(r_{0})}{3\pi} \ln \frac{r}{r_{0}}}$$

Two paradoxes:

- 1. At large distances $r \gg r_0$ the "bare" coupling is unobservable! (only a universal, ~1/N coupling is)
- 2. In the local limit $r_0 \rightarrow 0$ if the bare coupling is finite, the interaction vanishes! ("Moscow zero charge")

The difficulties of QED

"Zero charge" problem: the presence of screening in QED does not allow to reconcile the presence of interactions with the local limit of the theory
(Landau: strong interactions cannot be described by a field theory)

Ways out?

- 1. QED is not a fundamental theory, has to be modified at short distances; or
- 2. At strong coupling (short distances) pQED is misleading, and a true answer is entirely non-perturbative

Asymptotic Freedom

At short distances, the strong force becomes weak (anti-screening) one can access the "asymptotically free" regime in hard processes

and in super-dense matter (inter-particle distances ~ 1/T)

$$lpha_s(Q)\simeq rac{4\pi}{b\ln(Q^2/\Lambda^2)}$$
 number of colors of flavors $b=(11N_c-2N_f)/3$

Running coupling in QCD (Coulomb potential)

Spectral representation in the t-channel: $V(R) = \sum_{m} \sigma(m^2) \frac{\exp(-mR)}{R}$

$$Disc_{t} \quad | \cdots \rangle \qquad = \quad | \cdots \rangle \qquad \propto \quad \sigma \left(\quad | \cdots \rangle \right)$$

If physical particles can be produced (positive spectral density), then unitarity implies <u>screening</u>

$$\left\{\frac{d\,\alpha_s^{-1}(R)}{d\ln R}\right\}^{\rm phys} \propto \frac{1}{3}N + \frac{2}{3}n_f$$
 Gluons Quarks (transverse)

Coulomb potential in QCD - II

Missing non-Abelian effect: instantaneous Coulomb exchange dressed by (zero modes of) transverse gluons

$$\sum_{n} \left[0 + \bot \rightarrow 0 \right]^{n} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \dots$$

Negative sign (the shift of the ground level $\delta E \equiv E - E_0 = \sum_n \frac{|\langle 0|\delta V|n\rangle|^2}{E_0 - E_n} < 0$ due to perturbations - unstable vacuum!):

Anti-screening
$$\left\{ \frac{d \, \alpha_s^{-1}(R)}{d \ln R} \right\}^{\rm stat} \propto -4 \, N$$

Asymptotic freedom and Landau levels of 2D parton gas

The effective potential: sum over 2D Landau levels

$$V_{\text{pert}}(H) = \frac{g H}{4 \pi^2} \int dp_z \sum_{n=0}^{\infty} \sum_{s_z = \pm 1} \sqrt{2 g H (n + 1/2 - s_z) + p_z^2}.$$

Paramagnetic response of the vacuum:

$$\operatorname{Re} V_{\text{pert}}(H) = \frac{1}{2} H^2 + (g H)^2 \frac{b}{32 \pi^2} \left(\ln \frac{g H}{\mu^2} - \frac{1}{2} \right)$$

- 1. The lowest level n=0 of radius $\sim (gH)^{-1/2}$ is unstable!
- 2. Strong fields ← Short distances

QCD and the classical limit

Classical dynamics applies when the action $S = \int d^4x \ \mathcal{L}(x)$ is large in units of the Planck constant (Bohr-Sommerfeld quantization)

$$rac{S_{QCD}}{\hbar} \sim rac{1}{g^2\hbar} \int d^4x \ {
m tr} \ G^{\mu\nu}(x) G_{\mu\nu}(x) \gg 1$$

(equivalent to setting $\hbar \to 0$)

=> Need weak coupling and strong fields

$$D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}t^{a}$$

$$A^2 \ll \frac{p^2}{g^2}$$
 field
$$A^2 \sim \frac{p^2}{g^2}$$
 strong field

weak

Renormalization group and the effective action

RG constraints the form of the effective action:

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4\bar{g}^2(t)} G^2, \quad t \equiv \ln\left(\frac{G^2}{\Lambda^4}\right)$$

the coupling is defined through

$$t = \int_{g}^{\bar{g}(t)} \frac{dg}{\beta(g)}$$

At large t (strong color field),

$$\frac{1}{\bar{g}^2(t)} \sim t + \dots$$
 and $\mathcal{L}_{\text{eff}} \sim G^2 \ln \left(\frac{G^2}{\Lambda^4} \right)$

The space-time picture of high-energy interactions in QCD

- 1. Fast (large y) partons live for a long time;
- 2. Parton splitting probability is $\sim \alpha_s y$ not small!

Building up strong color fields: small x (high energy) and large A (heavy

Bjorken x : the fraction of hadron's momentum carried by

a parton; high energies s open access to small $x = Q^2/s$

the boundary of non-linear regime: partons of size $1/Q > 1/Q_s$ overlap

small x

Because the probability to emit an extra gluon is $\sim \alpha_s \ln(1/x) \sim 1$, the number of gluons at small x grows; the transverse area is limited

transverse density becomes large

Strong color fields in heavy nuclei

At small Bjorken x, hard processes develop over large longitudinal distances $l_c \sim \frac{2\nu}{Q^2} = \frac{1}{mx}$

Density of partons in the transverse plane as a new dimensionful parameter Q_s ("saturation scale")

Gribov, Levin, Ryskin

All partons contribute coherently => at sufficiently small x and/or large A strong fields, weak coupling!

McLerran, Venugopalan

The origin of classical background field

Gluons with large rapidity and large occupation number act as a background field for the production of slower gluons "Color Glass Condensate"

Non-linear QCD evolution and population growth

Color glass condensate

time $t o \ln \frac{1}{x} \equiv y$ rapidity

QuickTime™ and a TIFF (Uncompressed) decompressed are needed to see this picture.

In
$$\frac{1}{x}$$

SATURATION

Q
S(x)

PARTON GAS

In Λ^2
In Q^2

Linear evolution: T. Malthus (1798)

$$\frac{d}{dt}N(t) = r \ N(t)$$

r - rate of maximum population growth

$$N(t) = N_0 \exp(r t)$$

Unlimited growth!

Resolving the gluon cloud at small x and short distances ~ 1/Q²

number of gluons

"jets": high momentum partons