

Evaluation of G4 Releases in CMS (Sub-detector Studies)

- Software used
- Electrons in Tracker
- Photons in the Electromagnetic Calorimeter
- Pions in the Calorimeter System

LCG Validation Meeting October 25, 2006 S. Banerjee, TIFR/CERN (on behalf of CMS simulation team)

Software Used

- Tracker, Electromagnetic Calorimeter and Combined Calorimeter system all use CMSSW version 0_8_1 for Geant4.7.1.p02 with some CMS specific changes
- For Geant4.8.1.p01, all sub-detector systems use CMSSW version 0_9_0_pre2
- The different versions of CMSSW differ very little in handling hits and are identical in geometry
- Tracker and electromagnetic calorimeter studies use standard CMS detector for the geometry. The studies for the π showers use geometry of the calorimeter system only.
- Production cuts used are default CMS typically 0.01 mm in pixel detector, 0.1 mm in tracker and pre-shower detectors, 1 mm in most parts of the detector
- Tests are run on 3.6 GHz dual processor with 4GB memory

Electrons in Tracker

- Geometry used : Entire CMS detector
- Event sample: 2000 electron events
- 20 GeV electrons generated with $|\eta| < 3.5$ and $-\pi \le \phi \le \pi$
- Geant 4.8.1 QGSP sample was generated on a 3.2 GHz
 processor with 2 GB memory
- Process used: Particle Gun + Vertex Smear + G4 SimHit

Geant 4.7.1.p02	QGSP 2.8	3.0 sec/event
Geant 4.8.1.p01	QGSP 3.1	4.6 sec/event
Geant 4.8.1.p01	QGSP_EMV	2.7 sec/event

The hit quantities are similar in all the versions

25/10/2006 LCG-Validation

Evaluation of G4 releases in CMS

S. Banerjee 4

- Geant 4.8.1 QGSP shows slightly wider distribution in the Δz distributions
- Geant 4.7.1 gives more secondary hits than the new version. QGSP_EMV has a mean somewhere in between

Samples and Physics list

- Geometry used:
 - Entire CMS detector
- Samples used in tests:
 - Particle Gun
 - 10000 Photon: $\eta \text{=} 0.2$, - $\pi \leqslant \phi \leqslant ~\pi$, ~E = 30~GeV.
 - 10000 Photon: $\eta \text{=} 2.2$, - $\pi \leqslant \phi \leqslant ~\pi$, ~E = 30~GeV.
- Physics List used in tests
 - Geant4.7.1_QGSP with CMSSW_0_8_1.
 - Geant4.8.1_QGSP with CMSSW_0_9_0_pre2_g4_81
 - Geant4.8.1_QGSP_EMV with CMSSW_0_9_0_pre2_g4_81

- Geant471_QGSP is close to G481_QGSP_EMV
- Obvious difference between G471_QGSP and G481_QGSP
 - G471_QGSP gives the largest Energy deposition (mean= 20.15 GeV)
 - G481_QGSP gives the smallest energy deposition (mean = 19.94 GeV)

- Geant471_QGSP is very close to G481_QGSP_EMV
- Obvious difference between G471_QGSP and G481_QGSP
 - G471_QGSP gives the largest energy deposition (mean= 28.89 GeV)
 - G481_QGSP gives the smallest energy deposition (mean = 28.83 GeV)

Cluster Ratio in Barrel

- G471 QGSP: E1/E25 =0.6968 ٠
- G481_QGSP_EMV: E1/E25 =0.6933 •
- G481 QGSP: •
- E1/E25 =0.6905

- E_{Inci}=30 GeV: Energy of incident particle.
- E_{Barrel}: Energy deposited in Barrel.
- G481_QGSP_EMV: 98.46%
- G471_QGSP: 98.39%
- G481_QGSP: 98.34% (smallest)

- E_{Inci}=30 GeV: Energy of incident particle.
- E_{endcap}: Energy deposited in Endcap.
- G481_QGSP_EMV: 95.45%
- G471_QGSP: 95.48%
- G481_QGSP: 95.25% (smallest)

- The average energy of hits in Preshower:
 - G471_QGSP:
 - G481_QGSP_EMV:
 - G481_QGSP:

- 0.4227 MeV 0.4169 MeV
- 0.3795 MeV

25/10/2006 LCG-Validation

Hits in the 2nd layer of Preshower

- The Average Hit Number in the 2nd Layer:
 - G471_QGSP: 8.724
 - G481_QGSP_EMV: 8.903
 - G481_QGSP: 9.72

• Total energy deposited in the preshower detector is consistent among the 3 physics lists.

Pions in the Calorimeter

- Geometry used : Electromagnetic and Hadron calorimeter
- Event sample: 2000 pion events
- 100 GeV pions generated separately in the barrel (IηI ≈ 0.3) and the endcap (IηI ≈ 2.1) detectors with in a small φ window
- Process used: Particle Gun + Vertex Smear + G4 SimHit

Geant Version	Physics List	Barrel	Endcap
4.7.1.p02	QGSP 2.8	8.32 sec/event	7.44 sec/event
4.8.1.p01	QGSP 3.1	12.37 sec/event	10.19 sec/event
4.8.1.p01	QGSP_EMV	8.56 sec/event	7.29 sec/event

25/10/2006 LCG-Validation

- Geant 4.8.1 shows larger energy measurement (in particular the one with standard EM physics)
- Barrel and endcap show similar patterns

- Geant 4.8.1 shows softer spectrum for energy of individual hits
- This is a bit more pronounced with standard EM physics

Longitudinal Shower Profile

- The samples with Geant 4.8.1 show larger energy deposit in earlier layers but energy deposit in later layers are similar
- This enhancement is more pronounced with QGSP 3.1
- Barrel and endcap show similar patterns

Number of Hits

- There are more hits in ECal as well as in HCal in the Geant 4.8.1 version
- A similar trend is observed for the endcap (not shown)

- The extra hits in Geant 4.8.1 appear at a later time
- After energy weighting the time profiles are similar

Summary and Outlook

- Tracker sees fewer hits in the version 4.8.1 for electrons (more study is being done to understand what happens)
- Transverse shower profile for photons in crystals is similar between QGSP 2.8 (4.7.1) and QGSP_EMV (4.8.1). QGP 3.1 (4.8.1) shows slightly broader profile
- Longitudinal shower profile for hadrons show larger energy deposit at smaller depth but energy deposits at larger depths are similar
- Hit multiplicity in the showers increase (for both photons and pions). Average hit energy is smaller in the new version. The extra hits appear more at later time
- CMS has collected data with identified particle beams in 2006 and these data will be used to tune Geant4 physics in coming months 25/10/2006 LCG-Validation
 Evaluation of G4 releases in CMS
 S. Banerjee 21