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Jean François Champollion was a young student, when 

he met in Grenoble the famous mathematician Joseph 

Fourier, secretary of the Egyptian Institute of Cairo.

Fourier noticed Champollion and 

invited that student to visit his 

Egyptian collection.

Looking at the hieroglyphics, the young Champollion

asked if deciphering those signs would have ever 

been possible or not.

Once obtained a negative answer from Fourier, 

Champollion decided that in future he would have 

solved the mistery!

http://it.wikipedia.org/wiki/Immagine:Jean-Francois_Champollion_2.jpg
http://it.wikipedia.org/wiki/Immagine:Rosetta_Stone.jpg
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The desire to discover and understand secrets is 

deeply rooted inside the man-kind.

Even the less curious mind is stimulated by the perspective 

to reach knowledge levels that remain unachievable 

to others.

Someone has the luck to find a job that consists of the 

search for solving mysteries, as the Physicist that looks 

for a still undiscovered elementary particle or the investigator

that discovers the author of a crime!
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However the only possibility given to the majority of people for

satisfying this fundamental need is the application of its 

“own genius” to the solution of enigmas invented for our 

enjoyment.

For the majority of people there are detective stories 
and crosswords:

The deciphering of secret codes, the discovery of a new 

particle, or of a new material, can only be an hobby for a limited 

number of lucky people!
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Electric

al Resistivity
vs Temperature 

of some common materials
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ELECTRICAL CONDUCTION in metals

DRUDE MODEL of a free Electron Gas (1900)

“Electrons Wonder freely through a background of 
positive ions strongly pinned in Ordered Positions”
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The Hovland Rule for remembering the ground state electron configurations

1s
2s

2p 3s

3d 4p
3p 4s

4d 5p
4f 5d

5f 6d
6p 7s

7p 8s

6s
5s

The electron  configuration for a given element is then obtained by starting 
at the lower left and reading from left to right on successive rows
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DRUDE MODEL of a free Electron Gas

Approximations:

i. e-e interactions and e-ion interactions are neglected

ii. Fixed ions, instantaneous collisions

iii. After any collisions, electron loose memory

ENo field

Limits:
Hall effect; Magneto-resistance;                   ; m.f.p.; σ(Τ); σ(ω); Boron vs Alluminum)(Tf

T
k

=
⋅σ
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Low Temperature Resistivity

K

M
D

Lord Kelvin:     Electrons become free due to the thermal vibrations

Matthiessen:    Phonons + Residual  (1984)

Sir J. Dewar:    Electron motion gets obstructed by thermal vibrations

Dewar liquified H2, but he was not able to liquify He, then he switched to study soap films
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ρρρ
resph

+= Matthiessen Law   
(Valid only for low concentration of impurities)
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Heike Kamerlingh Onnes (left) and Van der Waals in Leiden at the helium 'liquefactor' (1908)
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Au in pure form

Hg distilled
(28th° Apr 1911)
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Persistent currents in superconducting rings ~ 2,5 years of experiment

(Collings,  1956)           ρ < 10-21 Ω cm
(Quinn, Ittner, 1962)     ρ < 10-23 Ω cm
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The Meissner-
Ochsenfeld effect

When a material undergoes the 
superconducting transition, the 

magnetic induction B is shrunk out 
of the sample

B = 0

Walter Meissner

Walter Meissner
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A Superconductor is not only a 
perfect conductor, 

but also a perfect DiamagnetT>TC T<TC T<TC

T>TC T>TC T<TC

A 
Supercond

uctor

A perfect 
conductor



32

27
0 102

2
cmGauss

e
hc

⋅×== −Φ



33

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

2

1)(
C

CC T
THTH

I Kind Superconductors (Sn,In, Hg,Pb,…….Soft SC)

B = H + 4πM = 0
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II Type  Superconductors
(hard materials, alloys, Refractory Materials

A current I < IC will interact with Vortexes 0Φ×=
rrr

JFL
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I Kind   II Kind
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Two Fluid model
Electrical Conduction mechanism due to 2 different components

J = Jn + JS

Normal
n
nn

Superfluid
n
n

n
n nS −=1

TC T
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nS/n

nn/n
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J = Jn + JS

Jn = σ E JS = ns e  vs

m vs = -e E
London equation
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Superconductors
I type

II type

Pippard

London

The l dependence vs mfp
induced Pippard to 
modify London’s model

He borrowed from Chambers the 
non local approach that relates 
Current and Electric field
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Strong Correlations among Superelectrons
within a coherence length ξ0
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dG =  - SdT + VdP - MdH

Gs(T,H) – GN(T,H) =         [H2 – HC
2(T)]1

8π
The SC-state is an equilibrium state for H < HC

HC

TC

H0

T

First order transition

Second order transition

The SC Transition is a transition to an ordered state

Ss(T,H) – SN(T,H) = HC(T) dHC(T)
4π dT
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Properties that do not change when crossing TC:
X-Ray diffraction pattern

Optical and Photoelectrical properties (reflectivity)

Elastic Properties (thermal expansion)

No transition in lattice structure

Properties that change when crossing TC:
Exponential behavior of specific heat and thermal conductivity

Sharp edge in adsorption in microwave spectrum

.., Ultrasonic attenuation, Tunneling, Nuclear spin-lattice relaxation time, …

The electronic structure change



43

Metals C = γ T + B T3

Electrons + Phonons

)(
3

2
2

FB ENkπγ =

Superconductors TkBeC
∆

−

=

Specific heat

In the energy spectrum of electrons there is a GAP
between the fundamental state and the first excited state
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Resuming:

For a Superconductor

HC, IC

e
hc
20 =φ

An Ordered State

There is a GAP

TC , if P  
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J. Bardeen L. Cooper
R.Schrieffer
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EF

Cooper Principle:

Between 2 electrons excited above Fermi Energy, it 
exists a pair bound state separated by ∆ from EF, 
however weak an attractive interaction is supposed

-p , p Bose Condensation
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An electron moving in the lattice polarizes 
and distorces the adiacent portion

Fluctuations of the lattice 
charge distribution

Interaction e-e mediated by the lattice
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Bose 
Condensati
on
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Tks
B20 =∆

αM
TC

1
=

The Isotopical Effect

λθ
1

14.1
−

⋅= eT DC

λ = (N(EF) V = 
= electron-phonon interaction

µ = electron-electron interaction( )µλθ −
−

⋅=
1

14.1 eT DC


