





Looking at the hieroglyphics, the young Champollion

asked if deciphering those signs would have ever
been possible or not.
Once obtained a negative answer from Fourier,

Champollion decided that in future he would have

solved the mistery!



http://it.wikipedia.org/wiki/Immagine:Jean-Francois_Champollion_2.jpg
http://it.wikipedia.org/wiki/Immagine:Rosetta_Stone.jpg

The desire to discover and understand secrets is

deeply rooted inside the man-kind.

Even the less curious mind iIs stimulated by the perspective

to reach knowledge levels that remain unachievable

to others.

Someone has the luck to find a [ob that consists of the

search for solving mysteries, as the Physicist that looks

for a still undiscovered elementary particle or the investigator

that discovers the author of a crime!



The deciphering of secret codes, the discovery of a new

particle, or of a new material, can only be an hobby for a limited

number of lucky people!
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ELECTRICAL CONDUCTION in metals

DRUDE MODEL of a free Electron Gas (1900)

“Electrons Wonder freely through a background of
positive ions strongly pinned in Ordered Positions”

- Nucleus

- Core Electrons

Valence Electrons

Na 1s22s22pb 3s!?

Conduction Electrons




The Hovland Rule for remembering the ground state electron configurations

The electron configuration for a given element is then obtained by starting
at the lower left and reading from left to right on successive rows 11



DRUDE MODEL of a free Electron Gas

Approximations:

I.  €-€ interactions and e-ion interactions are neglected

Il. Fixed ions, instantaneous collisions

lil. After any collisions, electron loose memory

R Vg

No field

my

® O
Limits:

K
Hall effect; Magneto-resistance; —— = F(T) ; m.f.p.; o(T); o(w); Boron vs Allundihium



Low Temperature Resistivity

Resistance
-

Temperature

Lord Kelvin: Electrons become free due to the thermal vibrations

Matthiessen: Phonons + Residual (1984)

Sir J. Dewar: Electron motion gets obstructed by thermal vibrations

. g .. 13
Dewar liquified H,, but he was not able to liquify He, then he switched to study soap films



°T°E=U'E Ohm Law

n@ 7
O = y — e T = % = Time between two collisions
P m

The collision frequency is addiive: f = f oh + f s €F» = +

D 'O:pph+pres ‘] 14



. Matthiessen Law
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Heike Kamerlingh Onnes (left) and Van der Waals in Leiden at the helium 'liquefactor' (1908)
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Pr. . KANERLINGE ONNEL Neieds snd spparaine smed in the Cryogusie
Labsrsrory 11: Morcury pamp for comprassing pare and sestly gusss wnder
high pressure.

Pigure 2
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Temperature
[K]

Au in pure form

Hg distilled
(28th° Apr 1911)
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The resistive superconducting transition of other elements
investigated by Onnes.

Persistent currents in superconducting rings-> ~ 2,5 years of experiment

(Collings, 1956) p <10% Qcm
(Quinn, Ittner, 1962) p <102 Qcm 24
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H He

Li BIC|N|]O]|F|Ne

Na | Mg P|S|Cl|Ar

K Cal| Sc As Br | Kr

Rb|sr| Y Rh | Pd’] Ag | | xe
Lu Pt | Au Po| At | Rn

Fr | Ra

Legend:

. Superconducting B | Non metallic elements

Superconducting under high pressure Elements with Magnetic order
or in thin films

Metallic but not yet found to be P Superconducting in thinygfilms

LI Superconducting when irradiated by a-particles




T.in K

Element Element T.in K Element T.in K
Aluminium 1-196 Mercurv-a 4-154 | Thallium 2-39
Cadmium 0-56 Mercury-8 3-949 | Thorum 1-368
Gallium-a 1-:091 Molybdenum 0-92 Tin X L yr
Gallium-8 = 62 Niobium ®9-26 Titanium 0-39
Gallium-y 7-62 Osmium 0-655 Tungsten ® 0012
Indium 3-4035 Protactinium 1:4 Uranium-a 0-68
Iridium 0-14 Rhenium 1698 | Uranium-f 1-80
Lanthanum-a 4-9 Ruthenium 0-49 Vanadium 5-30
Lanthanum-8 6-06 Tantalum 4-483 | Zinc 0-87
Lead 7:193 Technetium 8:22 Zirconium 0-546

Element T.in K Pressure
Bismuth 11 3916 25,000 atm
3-90 25,200 atm
3-86 25,800 atm
Bismuth 111 7-25 27,000 ~ 28,400 atm
Caesium 1-7 50 kbar
Germanium 4-85-5-4 ~ 120 kbar
Selenium 11 6-75, 6-95 ~ 130 kbar
Silicon ® 79 120-130 kbar
Tellurium ~ 33 ~ 56,000 atm
Thallium (FCC) 1-4 35 kbar
Thallium (HCP) 1-9 35S kbar
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Critical current density and critical field for superconducting
Nb3;Sn. The shadow line delimits the region of typel behaviour,
while the type Il behaviour occurs between the inner and outer 29

surfaces.



The Meissner-
Ochsenfeld effect

When a material undergoes the
superconductlng transition, the
AAAAMRAAREL T Asa%s 3adas Shrunk out

|| e

B=0

Walter Meissner

H

l @HD (-x/ \)




A Superconductor is not only a
perfect conductor,

T>Tc T<Tc T<Tc magnet
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A perfect
conductor
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Ho(T)=Hc- 1_(Lj

1
*

f = T4,

I Kind Superconductors (Sn,In, Hg,Pb,....... Soft SC)

B

B=pH

IM| A

B=H+4xM =0
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II Type Superconductors
(hard materials, alloys, Refractory Materials

Vorkia ' M
77 b N
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Two Fluid model

Electrical Conduction mechanism due to 2 different components

#

J=1J.+ Js

n
Normal T Superfluid

—]——n

_S
N N
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JS:nSe \_;S
m\_[sz_eE

Is the Analogous of the
“Ohm Law” for Superconductors

B(X) = B(O)-e[%sz



N
—

1074, {cm)

10—

I type
> Superconductors
11 type ™~~~ London

/Pippard

The 1 dependence vs mip
induced Pippard to
modify London’s model

He borrowed from Chambers the
non local approach that relates
Current and Electric field
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Strong Correlations among Superelectrons
within a coherence length &

J(F) =] f(5-F) AF)dF

instead of

39
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dG = - SdT + VdP - MdH

Gs(T,H) = Gy(T,H) = —L[H? - H(T)]

S

The SC-state 1s an equilibrium state  for H < Hc

HC A
First order transition

Hy
Second order transition
/ .

Tc T

+ SS(T1H) - SN(T’H) — HC(T) dHC(T)
Az dT

The SC Transition 1s a transition to an ordered state




Properties that do not change when crossing Tc:

v X-Ray diffraction pattern
v" Optical and Photoelectrical properties (reflectivity)

v' Elastic Properties (thermal expansion)

¥

No transition in lattice structure

Properties that change when crossing T¢:

v Exponential behavior of specific heat and thermal conductivity

v" Sharp edge in adsorption in microwave spectrum

v'.., Ultrasonic attenuation, Tunneling, Nuclear spin-lattice relaxation time, ...

1 1

The electronic structure change
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Specitic heat

Metals — C=yT + BT3 7=§szN(EF)

Electrons + Phonons
A

Superconductors — C —g@ KeT

In the energy spectrum of electrons there 1s a GAP
between the fundamental state and the first excited state




Resuming:

For a Superconductor

Tc /,if P/
Hc, Ic
hc
¢o — 2_6
An Ordered State

There 1s a GAP
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J. Bardeen L. Cooper
R.Schrieffer
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Fermi-Dirac probability

o

Energy, E

The Fermi-Dirac distribution at 0 K,
and at temperatures above 0 K. I \
- - |

Cooper Principle:

Between 2 electrons excited above Fermi Energy, it
exists a pair bound state separated by A from Ep,
however weak an attractive interaction 1s supposed

P,P / / Bose Condensation

46




An electron moving 1n the lattice polarizes

and distorces the adiacent portion
|

Fluctuations of the lattice
charge distribution

Two electrons interact attractively exchanging a phonon. The
lattice behaves as the medium through which they interact. One
of the two electrons "looks at” the other as a particle dressed of a
positive ions cloud.

Interaction @-@ mediated by the lattice &
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(a) (b) (c)

. Energy spectrum for:

(a) a normal metal. At T=0K all the electrons fill the lower
energy levels up to EF obeying the Pauli exclusion principle.

(b) A superconductor at T=0K . The Fermi surface is unstable
against pairs formation. The Bose condensation of Cooper pairs
into one stable ground state is energetically more stable.

(c) A superconductor at T # 0 K. Temperature excitations start
to break Cooper pairs and single particle excitations go to fill the
energy levels of the "normal bound”
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The isotope effect for Sn.

A =(N(Ep) V=
= electron-phonon interaction

L= electron-electron interaction



