
AHE Exercise 3: Scripting AHE Client Workflows

Aims and Objectives

• Automate common application workflows by scripting the AHE command line clients
• Configure the AHE command line clients to help automate scripting
• Understand the concepts behind AHE client workflows
• Modify the example scripts to perform more complicated tasks

Introduction

By calling the AHE clients from scripts, complicated application workflows can be achieved.
AHE workflows follow the pattern of running the ahe-prepare command followed by the ahe-
start command, followed by other commands needed to carry out the workflow (such as ahe-
monitor or ahe-getoutput).

Any scripting language can be used to call the AHE clients and perform the workflows. In the
following example we have used Perl – a detailed knowledge of Perl isn’t necessary to run the
scripts; the comments in the code explain the actions taking place.

Stage 1: Preparing to run workflows

1 The workflows in this exercise makes use of the ahe-client installation performed in

exercise 1. Ensure that the $AHECLIENT_HOME variable is set to the location of your
AHE client installation.

2 The AHE command line tools make use of a local cache of jobs to improve performance.
Before running the workflow scripts it is necessary to configure the location of the client
cache. To do so edit the aheclient.properties file in the $AHECLIENT_HOME/conf
folder. For example:

emacs $AHECLIENT_HOME/conf/aheclient.properties

The cache file can be saved into /tmp. Change the line:

uk.ac.ucl.chem.ccs.aheclient.cache=.ahecache

to

uk.ac.ucl.chem.ccs.aheclient.cache=/tmp/ahecache

3 When running the AHE command line clients, by default you will be asked for your
keystore password. When automating tasks by scripting clients it is necessary to
configure the password in the aheclient.properties file, so that the command line clients
can be called without user input.

To do so add your password to the right-hand side of the = sign of the following line:

uk.ac.ucl.chem.ccs.aheclient.passwd=

4 Before running the command line clients, ensure that you have generated and uploaded
a proxy certificate using the AHE GUI client.

Stage 2: Automating job submission

1 Usually when launching an AHE job from the command line, the user has to issue the

ahe-prepare command to create a web service to manage the application run, followed
by the ahe-start command to start the job. In this part of the exercise we will create a
script which to automate the prepare and start commands.

2 Download autojob.pl the script from:

http://www.realitygrid.org/AHE/training/courseinfo.html#ex3

The script is shown below. The comments in the code describe the tasks taking place.

The script automates the task of preparing a sort application job and executing it on the
NGS Oxford node.

#!/usr/bin/perl -w

use strict;
use warnings;

set the confFile variable to the first argument of the script
my $confFile = $ARGV[0];

create a unique job name based on the time
my $time = time();
my $jobName = 'testjob' . $time;

set the prepare_command variable to the command that you would
execute from
the terminal, setting the job name to the unique name generated
above

my $prepare_command = "$ENV{AHECLIENT_HOME}/bin/ahe-prepare -s
$jobName -app sort -e
https://chemd237.chem.ucl.ac.uk:9443/ahe/AppWSResource";

print out the prepare command
print $prepare_command . "\n\n";

execute the prepare command
system $prepare_command;

set the start_command variable to the command that you would
execute from
the terminal, setting the job name to the unique name generated
above

and the configuration file specified as the argument to the
script
the job will be run on the Oxford NGS node

my $start_command = "$ENV{AHECLIENT_HOME}/bin/ahe-start -s
$jobName -config $confFile -RM OESC -n 1 -wallTimeLimit 1";

print the start command
print $start_command . "\n\n";

execute the start command
system $start_command;

3 Change to the directory containing the autojob.pl script. Execute the script using the sort
application input files downloaded in exercise 2 as follows:

./autojob.pl /Users/ccs/Desktop/sortapp-input/config.txt

4 Use the AHE GUI client to monitor the job once submitted (the Update Job List button on
the Current jobs panel will poll the AHE server to update the job list.

Stage 3: Running multiple jobs

1 Access to the wide variety of resources that the grid provides makes it possible to

automate the submission of a large number of jobs. Expanding on the script created in
stage 2, we will automate the submission of jobs to several different machines on the
NGS.

In this example we will run the same sort job on machines at Oxford and RAL. The script
uses a loop to run the ahe-prepare and ahe-start commands twice, iterating through an
array of NGS machines and submitting to them in turn.

2 Download multijobs.pl the script from:

http://www.realitygrid.org/AHE/training/courseinfo.html#ex3

The script is shown below. The comments in the code describe the tasks taking place.

#!/usr/bin/perl -w

use strict;
use warnings;

set the confFile variable to the first argument of the script
my $confFile = $ARGV[0];

set the number of jobs to perform
my $numJobs = 2;

set an array containing the names of the NGS nodes to use
you can find the names of NGS machines by running the AHE

prepare command
manually - in this case we are submitting to Oxford and RAL
my @RMArray = ("OESC", "RAL");

create a unique job name used as a base for all simulations
lauched by
this script
my $time = time();
my $jobName = 'multijob' . $time;

for(my $i = 0;$i < $numJobs; $i++){

 print "Performing job " . $i;

set the array index
 my $arrayIdx = $i % scalar(@RMArray);

set the individual job name from the base job name and loop
iteration
 my $individualJobName = $jobName.$i;

set the prepare_command variable to the command that you would
execute from
the terminal, setting the individual job name to the unique
name
generated above

 my $prepare_command = "$ENV{AHECLIENT_HOME}/bin/ahe-prepare -
s $individualJobName -app sort -e
https://chemd237.chem.ucl.ac.uk:9443/ahe/AppWSResource";

print out the prepare command
 print $prepare_command . "\n\n";

execute the prepare command
 system $prepare_command;

set the start_command variable to the command that you would
execute from
the terminal, setting the individual job name to the unique
name generated
above and the configuration file specified as the argument to
the script

 my $start_command = "$ENV{AHECLIENT_HOME}/bin/ahe-start -s
$individualJobName -config $confFile -RM $RMArray[$arrayIdx] -n 1
-wallTimeLimit 1";

print the start command
 print $start_command . "\n\n";

execute the start command
 system $start_command;

}

3 Change to the directory containing the multijobs.pl script. Execute the script using the
sort application input files downloaded in exercise 2 as follows:

./multijobs.pl /Users/ccs/Desktop/sortapp-input/config.txt

4 Use the AHE GUI and command line clients to monitor both of the jobs launched by the
script.

Stage 4: Stacking jobs end on end

1 Grid resource usage policies often dictate a maximum amount of time that a job is run for

(the walltime limit). It can be necessary to split a long running job into shorter sections,
which will run within the time limit.

This script will stack sort jobs end on end, launching one on the NGS Oxford machine
and waiting for it to finish before starting the next. The input parameters to the script are
the config files of the different sort jobs to launch.

After preparing and starting a job, the script sits in a loop using the ahe-monior command
to poll the job status every minute. The output of the monitor command is saved in a
variable – when the status change to Job complete the loop breaks and the next
application is launched.

2 Download stackedjob.pl the script from:

http://www.realitygrid.org/AHE/training/courseinfo.html#ex3

The script is shown below. The comments in the code describe the tasks taking place.

#!/usr/bin/perl -w

use strict;
use warnings;

set the number of jobs to the number of input files specified
my $numJobs = $#ARGV + 1;

create a unique job name used as a base for all simulations
lauched by
this script
my $time = time();
my $jobName = 'stackedjob' . $time;

for(my $i = 0;$i < $numJobs; $i++){

 print "Performing job $i \n";

set the individual job name from the base job name and loop

iteration
 my $individualJobName = $jobName.$i;

set the prepare_command variable to the command that you would
execute from
the terminal, setting the individual job name to the unique
name
generated above

 my $prepare_command = "$ENV{AHECLIENT_HOME}/bin/ahe-prepare -
s $individualJobName -app sort -e
https://chemd237.chem.ucl.ac.uk:9443/ahe/AppWSResource";

print out the prepare command
 print $prepare_command . "\n\n";

execute the prepare command
 system $prepare_command;

set the start_command variable to the command that you would
execute from
the terminal, setting the individual job name to the unique
name generated
above and the configuration file specified as the argument to
the script
all jobs sill be sent to the Oxford NGS machine
the arguments will be iterated through to set the config file
to use

 my $start_command = "$ENV{AHECLIENT_HOME}/bin/ahe-start -s
$individualJobName -config $ARGV[$i] -RM OESC -n 1 -wallTimeLimit
1";

print the start command
 print $start_command . "\n\n";

execute the start command
system $start_command;

set variable to hold status of job
 my $jobStatus = "";

loop and perform monitoring command until status of job is Job
complete
 while(!($jobStatus =~ /Job completed/)){

 print "Polling $individualJobName\n";

wait for 1 min before polling
 sleep(60);

#use ahe_monitor command to poll job state.
 my $monitor_command = "$ENV{AHECLIENT_HOME}/bin/ahe-

monitor -s $individualJobName";
 print $monitor_command . "\n\n";

#execute the monitor command, and store the output in jobStatus
 $jobStatus = `$monitor_command`;
 }

 print "Job $i complete\n";

}

3 To run the script download the sortapp-stacked.tgz input file set from:

http://www.realitygrid.org/AHE/training/courseinfo.html#ex3

Unpack the file set with:

tar zxvf sortapp-stacked.tgz

Assuming in the input files have been downloaded to the desktop, change to the directory
containing your stackedjob.pl script and run the script as follows:

./stackedjob.pl /Users/ccs/Desktop/sortapp-stacked/config1.txt
/Users/ccs/Desktop/sortapp-stacked/config2.txt /Users/ccs/Desktop/sortapp-
stacked/config3.txt

The above command should all be on the same line.

4 Again, check the progress of the stacked jobs with the GUI/command line clients.

Further Work

• Extend the multjobs.pl script to submit more than two jobs
• Modify the mulitjobs.pl script to submit different jobs using the config1.txt – config3.txt

files from the sortapp-stacked input file set
• Modify the stackedjob.pl script to download the each job’s output files once it is comlete.
• Modify the stackedjob.pl script to check for failed jobs.

