

gLite Basic APIs

Christos Filippidis
(filippidis@inp.demokritos.gr)
Application Support Team
NCSR "Demokritos", Institute of Nuclear Physics

www.eu-egee.org

Enabling Grids for E-sciencE

Contents

- Workload Management proxy API (WM proxy)
- gLite I/O
- LCG File Catalog API (LFC)
- Grid File Access Library API (GFAL)
- Relational Grid Monitoring Architecture APIs (R-GMA)
- Virtual Organization Membership Service API (VOMS)
- ARDA Metadata Grid Application (AMGA)

WMProxy (Workload Manager Proxy)

- Is a service providing access to the gLite Workload Management System (WMS).
- Has been designed to efficiently handle a large number of requests for job submission.
- The service interface addresses the Web Services and SOA (Service Oriented Architecture) architecture standards.
- APIs are available for Java, Python, C++

WMProxy Supported types

Enabling Grids for E-science

The request types supported by the WMProxy service are:

- Job: a simple application
- DAG: a direct acyclic graph of dependent jobs
- Collection: a set of independent jobs
- Jobs in turn can be batch, interactive, MPI-based, checkpointable, Parametric.

- Client only sees a simple API library and a Command Line Interface
 - GUID or LFN can be used, i.e. open("/grid/myFile")
- GSI Delegation to gLite I/O Server
- Server performs all operations on User's behalf
 - Resolve LFN/GUID into SURL and TURL
- Operations are pluggable
 - Catalog interactions

Name conventions

Logical File Name (LFN)

 An alias created by a user to refer to some item of data, e.g. "lfn:cms/20030203/run2/track1"

Globally Unique Identifier (GUID)

 A non-human-readable unique identifier for an item of data, e.g. "guid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

Site URL (SURL) (or Physical File Name (PFN) or Site FN)

 The location of an actual piece of data on a storage system, e.g. "srm://pcrd24.cern.ch/flatfiles/cms/output10_1" (SRM)
 "sfn://lxshare0209.cern.ch/data/alice/ntuples.dat" (Classic SE)

Transport URL (TURL)

Temporary locator of a replica + access protocol: understood by a SE, e.g.
 "rfio://lxshare0209.cern.ch//data/alice/ntuples.dat"

- One single catalog
- LFN acts as main key in the database. It has:
 - Symbolic links to it (additional LFNs)
 - Unique Identifier (GUID)
 - System metadata
 - Information on replicas
 - One field of user metadata

- Grid storage interactions today require using some existing software components:
 - The <u>replica catalog</u> services to locate valid replicas of files in order to:
 - Download them to the user local machine
 - Move them from a SE to another one
 - Make job running on the worker node able to access and manage files stored on remote storage element.
 - The <u>SRM software</u> to ensure:
 - Files existence on disk or disk pool (they are recalled from mass storage if necessary)
 - Space allocation on disk for new files (they are possibly migrated to mass storage later)

GFAL, SRM and MSS

Enabling Grids for E-sciencE

- 1. GFAL will be the highest level interface
- 2. It will take care of SRM and Replica Managers and protocols (transparent for the user)
- 3. SRM will take care of the handling with MSS (not visible for the user)

Introduction to R-GMA

Relational Grid Monitoring Architecture (R-GMA)

- Developed as part of the EuropeanDataGrid Project (EDG)
- Now as part of the EGEE project.
- Based the Grid Monitoring Architecture (GMA) from the Global Grid Forum (GGF).

Uses a relational data model.

- Data is viewed as a table.
- Data structure defined by the columns.
- Each entry is a row (tuple).
- Queried using Structured Query Language (SQL).
- APIs exist in Java, C, C++, Python.
 - For clients (servlets contacted behind the scenes)

VOMS API

Virtual Organization Membership Service Provides information on the user's relationship with his Virtual Organization:

- Groups
- Roles
- Capabilities.

VOMS API

 single login using voms-proxy-init only at the beginning of the session (was grid-proxy-init)

 multiple VOs: the user may "log-in" into multiple VOs and create an aggregate proxy certificate, which enables him to access resources in any of them

Enabling Grids for E-science

voms-proxy-info -all

\$ voms-proxy-info -all

- subject :/C=GR/O=HellasGrid/OU=inp.demokritos.gr/CN=Christos Filippidis /CN=proxy
- issuer : /C=GR/O=HellasGrid/OU=inp.demokritos.gr/CN=Christos Filippidis
- identity: /C=GR/O=HellasGrid/OU=inp.demokritos.gr/CN=Christos Filippidis
- type : proxy
- strength: 512
- path:/tmp/x509up_u21457
- timeleft : 11:59:51

=== VO cms extension information ===

- VO : cms
- subject : /C=GR/O=HellasGrid/OU=inp.demokritos.gr/CN=Christos Filippidis
- issuer : /C=CH/O=CERN/OU=GRID/CN=host/lcg-voms.cern.ch
- attribute : /cms/Role=NULL/Capability=NULL
- timeleft : 11:59:51

AMGA - Metadata Access on the Grid

AMGA – ARDA Metadata Grid Application

Metadata on the GRID

- Metadata is data about data
- On the Grid: information about files
 - Describe files
 - Locate files based on their contents
- But also simplified DB access on the Grid
 - Many Grid applications need structured data
 - Many applications require only simple schemas
 - Can be modelled as metadata
 - Main advantage: better integration with the Grid environment
 - Metadata Service is a Grid component
 - Grid security
 - Hide DB heterogeneity

AMGA Features

Dynamic Schemas

- Schemas can be modified at runtime by client
 - Create, delete schemas
 - Add, remove attributes

Metadata organised as an hierarchy

- Schemas can contain sub-schemas
- Analogy to file system:
 - Schema ⇔ Directory; Entry ⇔ File

Flexible Queries

- SQL-like query language
- Joins between schemas

AMGA: ARDA Metadata Grid Application

Enabling Grids for E-sciencE

- Side-by-Side a File Catalogue (LFC): File Metadata
- Access control to resources on the Grid is done via VOMS
- Strong security requirements:
 - patient data is sensitive
 - metadata access must be restricted to authorized users

AMGA Implementation

AMGA Implementation:

- SOAP and Text frontends
- Streamed Bulk Operations
- Supports single calls, sessions & connections
- SSL security with grid certs (negociated by client)
- Own User & Group management + VOMS
- PostgreSQL, Oracle,
 MySQL, SQLite backends
- Works alongside LFC
- C++, Java, Perl, Python clients

A GRID Metadata Catalogue

Enabling Grids for E-sciencE

- LFC Catalogue
 - ➤ Mapping of LFN to PFN
- UNOSAT requires
 - ➤ User will give as input data certain coordinates
 - → As output, want the PFN for downloading

gLite Documentation

gLite Documentation

http://glite.web.cern.ch/glite/documentation/