EXCITATION OF PLASMA
WAKEFIELDS




Basics: definition of laser peak intensity

Consider a EM field as a plane wave

E : n
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Peak intensity is defined as
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For a Gaussian pulse (at focus)
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Example: E=1 J, wy,=20 um, 1,=30 fs
1,=5%1018 W/cm?




a: the normalized vector potential

o oA
Laser E field linked to potential vector a by EL = —g
Normalized vector potential a eA
1 m.C
3 = ek,
m,Ca

In practical units a, =8.5x107°° AL pum]1 ¥ [W / cn?]

Example: 1,=2%1018 W/cm? (A=1pm)—> a=1.2




Relativistic regime of laser-plasma

Interaction

dp e
Electron in laser field: — = ——(EL VvV X BL)

dt Me

* Weakly relativistic case v/c <<1 dvosc — _ E_ aA
(magnetic component is
neglected) dt rne rne at
) VOSC — a
C

Relativistic regime is entered when a ~ 1 (I, ~ 1018 W/cm?)




Basics: gaussian beam propagation

1/2
1{!{;5:]- — ‘U_!D(l + EE;FE_%) a Rayle|gh Iength: from IO to |0/2

Zp = *Fr-wgf'i 0

Example: A=1 pm, w,=20 pm = zg=1.2 mm




Fluid model: hypothesis (1)

e Plasma i1ons are supposed to be immobile. This 1s justified when the
typical time for ion motion (w_.7) is large compared to the driver pulse

pi )
duration (7 < w;').

e The plasma is represented by an electron fluid. This fluid is described
by macroscopic quantities such as its density n(r.t), its velocity v(r, ).
Let us note that in such a model, kinetic effects (trapping, wavebreak-
ing) are not taken into account.

e 'The electron fluid is cold. In the case of a laser driver this is justified
when the quiver velocity of electrons in the laser field 1s orders of mag-
nitude larger than the thermal velocity: vgse > € Ejgser /[ (Mewp) = v, =
(kpT./ mﬁ)lf 2. In the case of a particle beam driver, this is true when
the beam causes plasma electrons to move at velocities greater than

Uik .




Fluid model: hypothesis (2)

e We consider the weakly relativistic case, also called the linear regime. in
which plasma electrons are not relativistic. This implies that the laser
intensity is sufficiently low a2 < 1, that the beam density is sufficiently
low n, < ng and in consequence that the wakefield amplitude 1s low
on/ng < 1.

e The plasma is strongly underdense w,/wy < 1. Here wy is the laser
frequency and w, 1s the plasma frequency.

e We will assume here that the problem has cylindrical symmetry.




Definition of drivers

e Laser driver

a=al(r, z.t)cos(koz — wpt)ey

— envelope
a%(r,¢) = ad exp(—(?/L2) exp(—r?/o?)

( =z —v,t
 Electron beam driver
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Poisson equation

V- E= Eﬁ with p = —e(n —ng) + gy (electron beam driver: g=-e)
0

In addition, the fields can be written in terms of potentials:

B = VxA (5)
JA
E = Vb - — (6)
ot
We now choose the Coulomb gauge, so that V - A = 0. In this gauge, the
Poisson equation becomes

V20 = Z(n +np — ng)
£0

_ eng (O 1y
Rewrite as: V2P = ( 1 _)
€0 TLy o




Physical meaning of potential

So that ® here has a clear physical meaning: it represents the potential in
the plasma due to charge separation. In this gauge the vector potential A
represents the laser field. In this case, the electric field E has two components:
the laser component Ey, = —9A /0t which is a high frequency field wy and
the plasma field E, = —V®, which i1s at w,,.




Fluid equations

We start with the continuity equation

%—I—?-(nv]=ﬂ

We also have the equation of motion for Huid electrons

v €
E+[v.v]v=_mﬂ

(E + v x B)

which can be rewritten as:

XN v Vv = ==
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Ponderomotive force

We will neglect the plasma field for now in order to emphasize the pondero-
motive force. So we will assume temporarily that the electrons only witness

the laser field: i
o G

— 4+ (v- Vv = (Fp + v % Br) (11)
it M,
@ Some algebra
v e a?
N SR -V
it M, L 2

@ Motion of electrons in plasma after
averaging over fast oscillations




lllustration of ponderomotive force

« Solving the motion of an electron in a laser field (propagating along
z and polarized along x): dp

&
— = —(E;, + v x Br,)
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Plasma wakefield equation

juations:

svstem of ec
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Laser driver case

e Assume no electron beam n, =0

(d—g + wz) on = CE’FEE

o2 F

« Write equation on potential using: (D — 6(1)/772,9(32
20 1.2
V=) = kjon/ng




Moving window

The laser driver moves at the velocity of light (a is a function of ( = z —v,1).
so it is practical to change variables in order to follow the laser pulse: 7 =1
and ¢ = z — v,t. For the new variables:
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Quasi-static approximation

Neglect derivatives in T compared to derivatives in

Physical meaning: the plasma responds adiabatically to slow
changes of the driver

1/z,
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Solutions

« Solution behind the pulse
(gaussian shape)

ke, L
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Solutions

* Using Poisson equation, compute density perturbation

: . O, ,ll Lﬂ 273/4 1202
— Longitudinal - _\/I”D —kpLg/4 12/ sin(k,C)
o
) n,. ) n. 4 2
— Transverse - 1
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d, E,/E,, oNn,/n, are normalized quantities and have the same amplitude




Resonance condition

Find optimimum pulse duration
for plasma wave excitation a¢/al‘O =0
Broad resonance condition: kaO = \/E
_ _ 4 L7 x10%
Practical units Ner(Cc ") = .
72 . (fs)
fwhm




Accelerating and focusing fields
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1D nonlinear theory (fully relativistic)

2 ;}.:E 2
Basic equation: ¢ R L+ ”x 1
¢z 2 | 2

No limit on a (until wavebreaking...)

Wavebreaking field: E\}V[é = \/2(7p —1) Eo

Fields higher than E, are possible




1D nonlinear plasma waves

30 fs pulse
a=2
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Limit of 1D nonlinear fluid theory: wave breaking
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3D nonlinear wakefields

K
. Electron density

3
2
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relativistic shift of o,

Defocusing

1.5 Focusing

axial force
o
w

kg (z-C 1)

Requires more complex models (fluid or kinetic)
+ computer simulations




E/Em

Beam loading considerations

No particle beam
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Charge limit

(Eﬂ%)—:c\? — — W —

 Limit on beam density: n, ~ nya,

. _ _ Ao
Limit on charge: Npar= Voeam XNod

* Typical example: bunch 5 ym x 5 pm x 10 pm, &=1, n,2=10*° cm-3

> Q=400 pC




Summary

Intensity and a: a, = 8.5x 10_10 /1[ pm] | 3/2[\N / sz]

Wakefield amplitude: proportional to laser intensity

~ /72 ’ﬁpro —K2L3/4

. 4 L7 x10%
Wakefield max at resonance Ner(Ccm ) =

T?u.'h.-m ( fH J
Linear regime: sinusoidal field + radial fields
Nonlinear regime: focusing phase is longer

Charge limited by beam loading: Nj,= Voo XNya2

Scaling law with particle beam, replace &2/4 by n,/n,




