NUMERICAL METHODSFORSOLVING COMPLEX PLASMA PHYSICS PHENOMEN A

Fluid codes

- $\nabla^2\Phi=\frac{en_0}{\epsilon_0}\Big(\frac{\delta n}{n_0}+\frac{n_b}{n_0}\Big)$ Solve Poisson equation \bullet
- $\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$ Solve fluid equations \bullet

$$
\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{p} = e\bigg(\nabla \Phi + \frac{\partial \mathbf{A}}{\partial t} - \mathbf{v} \times \nabla \times \mathbf{A}\bigg)
$$

• Solve wave equation
$$
\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) a = k_p^2 \left(1 + \frac{\delta n}{n_0} - \frac{\langle a^2 \rangle}{2}\right) a
$$

Fast computation but not enough physics: no trapping, no injection

PIC codes

- • Brute force method: represent plasma electrons and ions by macro particles scattered on a grid (the simulation box)
- •Push electrons and ions in fields

PIC code scheme

PIC code: advantages / limitations

- \bullet Able to model *most of the physics of interest*:
	- Plasma waves
	- Nonlinear effects
	- Kinetic effects (injection, trapping...)

- \bullet Laser propagation: requires *small grid size* (<< λ₀)
- \bullet *Large number of particles* are necessary for reasonable results
- \bullet 3D laser-plasma interaction:
	- 1 mm propagation: a few days on a super-computer (100s of nodes)

Long runtime, hard to do long scale propagation

Hybrid codes

•Particle-in-Cell code in cylindrical coordinates (r,z) •Laser evolution calculated using the envelope equation

Considerable gain (103) in CPU time (10-20 hours CPU for one case)

Example of hybrid PIC code run

