NUMERICAL METHODS FOR SOLVING COMPLEX PLASMA PHYSICS PHENOMENA

Fluid codes

- Solve Poisson equation $\nabla^2 \Phi = \frac{en_0}{\epsilon_0} \left(\frac{\delta n}{n_0} + \frac{n_b}{n_0} \right)$
- Solve fluid equations $\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{p} = e \left(\nabla \Phi + \frac{\partial \mathbf{A}}{\partial t} - \mathbf{v} \times \nabla \times \mathbf{A}\right)$$

• Solve wave equation
$$\left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)a = k_p^2\left(1 + \frac{\delta n}{n_0} - \frac{\langle a^2 \rangle}{2}\right)a$$

Fast computation but not enough physics: no trapping, no injection

PIC codes

- Brute force method: represent plasma electrons and ions by macro particles scattered on a grid (the simulation box)
- Push electrons and ions in fields

PIC code scheme

PIC code: advantages / limitations

- Able to model *most of the physics of interest*.
 - Plasma waves
 - Nonlinear effects
 - Kinetic effects (injection, trapping...)

- Laser propagation: requires small grid size (<< λ_0)
- Large number of particles are necessary for reasonable results
- 3D laser-plasma interaction:
 - 1 mm propagation: a few days on a super-computer (100s of nodes)

Long runtime, hard to do long scale propagation

Hybrid codes

Particle-in-Cell code in cylindrical coordinates (r,z)
Laser evolution calculated using the envelope equation

Considerable gain (10³) in CPU time (10-20 hours CPU for one case)

Example of hybrid PIC code run

