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Understanding nucleon strangeness: Dark Matter

Dark Matter direct detection experiments

Look for scattering of dark matter candidates (e.g., neutralino)

Need to know theoretical cross-sections

Spin-independent scattering amplitude governed by sigma terms:

M∼
∑

q

Cq〈N |mqqq|N〉 =
∑

q

Cqσq =
∑

q

CqmNfq

Theoretical uncertainty dominated by

In order to interpret Dark Matter direct 
detection experiments:

UNDERSTAND THE ROLE OF STRANGE 
QUARKS IN THE PROTON

Strange sigma term Contribution of strange 
quarks to the mass of 
the proton
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Sigma terms: experiment

21st July 2016, referring to the Lux expt.
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Traditional evaluation

σπN = ml〈N |uu+ dd|N〉
Experimental: σπN determined from πN scattering data

σπN ∼ 45-70 MeV

Controversial (but less so than σs)

σs
Indirect: σs evaluated using σπN and σ0 = ml〈N |uu+ dd− 2ss|N〉
Determination has limited precision

Early: σs ∼ 300 MeV
I up to 1

3MN from non-valence quarks
I incompatible with constituent quark models

σs difficult to pin down experimentally
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Experiment: σs depends on σπN

Even if σπN perfect

∆σs = ms

2ml
∆σ0 ∼ 90 MeV
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Numerical first-principles approach

Discretise space-time (4D box)

Lattice spacing a, volume L3 × T
order 323 × 64 ≈ 2× 106 lattice sites

Quark fields reside on sites: ψ(x)

Gauge fields on the links: Uµ = e−iagAµ(x)

Approximate the QCD path integral by Monte Carlo:

〈O〉 = 1

Z

∫
DADψDψO[A,ψψ]e−S[A,ψψ] 〈O〉 ' 1

Nconf

Nconf∑

i

O([U i])

with field configurations U i distributed according to e−S[U ].

Phiala Shanahan (MIT) Nucleon Strangeness from the Lattice ICHEP, August 2016 5 / 17

Need to reduce uncertainty on σs - lattice QCD
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σs on the lattice: two methods

Direct:

Computationally expensive

Noisy

First physical-point results beginning to appear

Feynman-Hellmann:

σBq = mq
∂MB
∂mq

Computationally cheaper

May have scale-setting ambiguities [arXiv:1301.3231]

Several physical-point results available
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Can vary quark masses
on the lattice!



Feynman-Hellmann sigma terms

Results with Chiral EFT:
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Feynman-Hellmann sigma terms

Most recent results:

Nucleon sigma terms from Feynman-Hellmann theorem
BMW-c [Dürr,1510.08013]
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Summary of lattice sigma terms

Summary of sigma terms and fTq
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[Hoferichter,1602.07688] request for a lattice computation of fiN scattering lengths.

Also interesting: ‡fiN(Q2 = ≠2m2
fi) ≠ ‡fiN(0) æ scalar radius from form factor.
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Direct lattice and recent FH values consistent
Values from phenomenological analyses of π-N scattering trend higher
[Hoferichter,1506.04142] σπN = 59.1(3.5) MeV
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Precise, small values of fTs = σs/MN : ≈ 2% nucleon mass from s quarks
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Strange quarks in the proton

Test for nonperturbative QCD

strange quarks
lightest of the ‘sea only’ quarks
→ play the largest role

strange sigma terms - needed for calculation/prediction of dark
matter cross sections

strange contribution to proton spin

strange PDFs

strange electromagnetic form factors
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Electromagnetic form factors
Form factors characterize the extended nature of composite particles

〈P ′|JµEM|P 〉 ∝ GE(Q2), GM(Q2)
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Q2 = −q2



Electromagnetic form factors
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Strange form factors on the lattice: two methods

Direct:

Computationally expensive

Noisy

First physical-point results beginning to appear

Indirect:

LATTICEEXPERIMENT DISCONNECTED=-

Computationally cheaper

Needs careful control of systematics

Relies on experimental input for total form factors
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Strange EM form factors: INDIRECT

Electric Magnetic

Red: Experiment, JLAB, MIT-BATES, MAINZ
Blue/Green: Lattice (different lattice sizes/spacings)

.5

Theory uncertainties leading 
experiment by an order of 
magnitude : PREDICTION

PES et al., PRL114 (2015)
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Strange EM form factors: DIRECT

mπ = 330 MeV

3

FIG. 2. Combined fit result for disconnected contribution
Gs

M (Q2 = 0.0515 GeV2) with m⇡ = 207 MeV. The bands
show fits to the 3pt/2pt ratios. The current insertion time t1
is shifted by half the sink-source separation for clarity.

signal-to-noise ratio is approximately 5 � 10% and near
m⇡ = 140 MeV for the 48I ensemble the fit is more stable
compared to the SR and R methods separately.

In Fig. 2, we present the result of CF for a particular
case, the 48I ensemble with quark masses for the nucleon
corresponding to m⇡ = 207MeV, a four-momentum
transfer Q2 = 0.0515 GeV2 and several source to sink
separations t2 = 5 � 9. We show the SR(t2) plot with
an inset in the R(t2, t1) plot. One can clearly see from
the SR-plot that the slope is negative and from the
R-plot that the 3pt/2pt ratio saturates near t2 = 9.
The orange and cyan bands in the R and SR-plots
show the error bound obtained from the CF which is
Gs

M (Q2 = 0.0515 GeV2) = �0.029(9). We present this
plot in particular to show how one can obtain a reliable
and stable fit near the physical m⇡. The unprecedented
precision we obtain in the statistic is partly due to the
fact that we calculate the low-mode contribution to the
loop exactly without any stochastic noise. We find that
about 15 � 25% of the signal is saturated by the low
modes while determining the s-quark matrix elements in
this calculation.

Next, we explore the Q2 dependence of Gs
M (Q2) to

obtain the strange magnetic moment at Q2 = 0. We
compare both the dipole form and the model independent
z-expansion fit [33, 34] given by,

Gs,dipole
M (Q2) =

Gs
M (0)

(1 + Q2

⇤2 )2
,

Gs,z�exp
M (Q2)=

kmaxX

k=0

akzk , z=

p
tcut + Q2 �p

tcutp
tcut + Q2 +

p
tcut

.(5)

We set tcut = (2mK)2. We keep the first three coe�cients
multiplying zk in the z-expansion formula and perform
fits versus Q2. We calculate the Jackknife ensemble aver-
age a2,avg of the coe�cient a2 and then perform another
fit by setting a2 centered at a2,avg with a prior width
equal to 2 ⇥ |a2,avg|. We find the e↵ect of setting this
prior is almost insignificant for the 24I and 32I ensem-
ble data, especially at heavier quark masses. However,
the prior stabilizes the extrapolation of Gs

M (Q2) for pion

masses around the physical point for the 48I ensemble.
Since the z-expansion method guarantees that ak coef-
ficients are bounded in size and higher order ak’s are
suppressed by powers of zk, we carefully check the ef-
fect of the a3 coe�cient in our fit formula and estimate
this e↵ect to calculate the systematic uncertainties in the
z�expansion fit. We present the extrapolation of Gs

M (0)
using both the dipole and z-expansion methods in Fig. 3
with the smallest lattice spacing a = 0.0828(3) fm used in
our simulation and lattice data at the unitary point for
the 32I ensemble with a pion mass m⇡ = 330 MeV. The
present calculation does not provide any conclusive ev-
idence of any statistically-significant di↵erence between
these two methods, as seen in the figure. However, be-
cause of a better signal-to-noise ratio, we use the model-
independent fit in the rest of our calculation.

FIG. 3. Comparison between the classical dipole form and
the model-independent z-expansion fit to study the Q2-
dependence of Gs

M and extract Gs
M (0). The Gs

M (Q2) data
points correspond to the 32I ensemble with quark masses cor-
responding to m⇡ = 330 MeV.

From the model-independent extrapolations, we ob-
tain 17 di↵erent estimates of Gs

M (0) from three di↵er-
ent lattice ensembles with varying quark masses. As the
nucleon two-point correlation function depends on the
valence quark masses and the strange quark matrix el-
ements depend on mloop, we use a chiral extrapolation
linear in m⇡ and mloop = mK [20, 43–45]. The final fit
formula for the extrapolation of Gs

M (0) to the physical
point is,

Gs
M (0; m⇡, mK , a, L) =A0 + A1m⇡ + A2mK + A3a

2

+A4m⇡

✓
1 � 2

m⇡L

◆
e�m⇡L (6)

to account for the pion mass dependence and the O(a2)
correction and volume dependence [46].

The extrapolation of the strange magnetic moment is
shown in Fig. 4 and at the physical point in the limit
a ! 0 and L ! 1 we obtain

Gs
M (0)|physical = �0.073(17)(04)(06)(04) µN . (7)

Here, the first uncertainty is from the statistics, the sec-
ond one is from the interpolation to the physical s-quark
mass, the third one is from introducing a3 coe�cients in
the z-expansion fit and the fourth one is from the global

Precise direct results — physical-point results likely soon
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Strange magnetic moment

Red: Analysis of world expt. data
Blue: Direct lattice QCD
Green: Indirect lattice QCD
Bands: physical-point results
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Summary

Consistent picture: strange quarks contribute

∼ 1-5% to the mass of the nucleon
Direct calculations strange sigma term are consistent and precise
→ new level of precision for DM searches

Strange sigma term

σs = 10 - 50 MeV

∼ 1% to the nucleon magnetic moment
→ new benchmark for experiment

Strange magnetic moment

GsM (Q2 = 0) = −0.07± 0.03µN
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Experimental determinations of Gs
E/M

EM and weak vector currents give access to different combinations of Gp,(u/d/s):

Gp,γ =
2

3
Gp,u − 1

3

(
Gp,d +Gp,s

)

Gp,Z =

(
1− 8

3
sin2 θW

)
Gp,u −

(
1− 4

3
sin2 θW

)(
Gp,d +Gp,s

)

Assume charge symmetry (Gp,u = Gn,d, Gp,d = Gn,u, Gp,s = Gn,s)

well determined PVES

Parity-violating electron scattering
JLab (G0, HAPPEX), MIT-Bates (SAMPLE), Mainz (A4)
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