

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

Contribution ID: 1399

Type: Poster

Probing H+ with the mu_x boosted bottom-jet tag

Monday 8 August 2016 18:30 (2 hours)

We present the discovery potential for a TeV-scale charged Higgs using 100–300 fb⁻¹ of 13–14 TeV LHC data. While H^+ is predicted by a generic two Higgs doublet model, strong phenomenological constraints restrict our focus to type-II models in the alignment limit. We examine H^+ produced in association with, and decaying to, 3rd generation quarks $(pp \rightarrow \bar{t}b(H^+ \rightarrow t\bar{b}))$. The $H^+ \rightarrow t\bar{b}$ final state gives H^+ superior reach (compared to its neutral H/A siblings) in the critical "wedge" region $(\tan(\beta) = 2-20)$, where the dominant neutral coupling transitions from y_t to y_b .

We tag massive $H^+ \rightarrow t\bar{b}$ by pairing a high-efficiency boosted-top tag with our low fake-rate μ_x boosted bottom-jet tag (which rejects light jets ~10 times better than prior b tags). The success of the μ_x tag to suppress the QCD background for H^+ events further validates its usefulness in the high- p_T regime (as has already been demonstrated in generic W' and leptophobic Z' searches).

Primary authors: PEDERSEN, Keith (Illinois Institute of Technology); SULLIVAN, Zack (Illinois Institute of Technology)

Presenter: PEDERSEN, Keith (Illinois Institute of Technology)

Session Classification: Poster Session

Track Classification: Higgs Physics