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0 GeantVectorized — an introduction
O Challenges, ideas, goals

O Main components and performance
O Design and infrastructure
O Vectorization: overheads vs. gains
O Geometry library
O Physics processes

O Performance benchmarks

O Results, milestones, plans



Geant4 Multi-threading

O Event level Parallelism
O Each thread processes one full event

exclusively = Demonstrates
O Part of Geant4 since release 10.0, Dec. a Linear scaling of
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Shown steps enable to scale forward
to many-core co-processors.

Intel@ Libraries
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functionality and
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(with Intel® MKL)
. multiple nodes.
Baseline
Recompilation of I'm't? nlq';; .
the existing code. .-
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Reality is that refactoring effort towards multi-level parallelism goes way beyond the usage of specific
software tools and the effort and end result depend significantly on the workload and design.



What do we want to do?

O Develop an all-particle transport simulation software
with

O Geant4 or new improved (where possible) physics
models

O A performance between 2 and 5 times greater than
Geant4

O Full simulation and various options for fast
simulation

O Portable on different architectures, including
accelerators (GPUs and Xeon Phi’s)

O Understand the limiting factors for a one-order-of-
maanitiide (10x) imbprovement



The ideas

O Transport particles in groups (vectors)
rather than one by one

O Group particles by geometry volume or
same physics

O No free lunch: data gathering
overheads needs to stay less than
vector gains

O Dispatch SoA to functions with vector
signatures

O Use backends to abstract interface:
vector, scalar

O Use backends to insulate
technology/library: Vc, Cilk+, VecMic,

O Redesign the library and workflow to target
fine grain parallelism

O CPU, GPU, Phi, Atom, ...

O Aim for a 3x-5x faster code, understand
hard limits for more




HEP transport is mostly local !

entrles per velume sorted ° LOCO”.I.y no.l. exploi.l.ed by
| the classical transport
« Existing code inefficient

1 50 per cent of |- (0508 |pC)
ool the time spent in Cache misses due to
. 50/7100 volumes| | fogmented code

1n5 [ 000000000 OO OO OO

ATLAS volumes sorted by transport time. The same
behavior is observed for most HEP geometries.
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Challenges

O Overhead from reshuffling particle lists should not offset SIMD
gains

O Exploit the hardware at its best, while maintaining portability

Scheduler

O Test from the onset on a “large” setup (LHC-like detector)
O Toy models tell us very little — complexity is the problem



Status on GPU

O Broker adapts baskets to the coprocessor
O Selects tracks that are efficiently processed on coprocessor
O Gather in chunk large enough (e.g. 4096 tracks on NVidia K20)
O Transfer data to and from coprocessor
O Execute kernels

O On NVidia GPU, we are effectively using implicit vectorization

O Rather than one thread per basket, on GPUs we use 4096 threads
each processing one of the tracks in the basket

O Cost of data transfer is mitigated by overlapping kernel
execution and data transfer

O We can send fractions of the full GPU's work asynchronously
using streams



Geometry - VecGeom

O Geometry takes 30-40%
CPU time of typical
Geant4 HEP Simulation

O A library of vectorised
geometry algorithms to
take maximum advantage
of SIMD architectures

O Substantial performance
gains also in scalar mode

1600

1200

time units

Better scalar

800

400

UsSolids

H Rroor
[ Geant4
[ Usolids DistanceToln
B VecGeom ScalarAPI

B VecGeom Many-Track API 3 3x

SafetyToln

Ix

[n-or-Out?

13.62x

L/

‘« AIIIIII

excellent
SIMD vector
performance

total speedup cmp
to USolids




Geometry performance on K20

O Speedup for different navigation inside dstToin safetyToln
methods of the box shape, i ! i i
normalized to scalar CPU 4 e T
O Scalar o |

(specialized/unspecialized) e e

O Vector
O GPU (Kepler K20)
O ROOT . . = | v o
R e awer S e S ™

0 Data transfer infout is
asynchronous contains distroout safetyToOut

O Measured only the kernel
performance, but providing
constant throughput can hide
transfer latency

O The die can be saturated with e TN 4 S s S I
both large track containers, . embenienbe e
running a single kernel, or with L i i o T e s v v o T s 0 o
smaller containers dynamically v

scheduled.

O Just a baseline proving we can



Evolution

O VecGeom code has been developed for GeantV vectorised
transport

O USolids was developed to unify TGeo and Geant4 geometry
packages

O Now VecGeom algorithms are retrofitted to USolids and are
available both to Geant4 and to TGeo

O VecGeom has the potential to introduce a few percent gain for
Geant4 (to be verified)

O Algorithm improvement and (internal) vectorisation of some shapes

O VecGeom is the consolidation both on the algorithm level and on
the developer level of G4-Geo, TGeo, USolid and Vectorization
efforts. 13



Portability

O Long-term maintainability of
the code

O write one single version of
each algorithm and to
specialise it to the platform
via template programming
and low level optimised
libraries (V¢ in our case)

O A Xeon Phi specific
backend is being developed
in collaboration with
CERN's openlab
(UME::SIMD)

O Results are quite
encouraging: maybe
portable HPC is NOT an
oxymoron after all...

1 icle API Many particle
particie APl (SIVID)

Common C++.
template functions

double distance( double ); Vc::double_v distance( Vc::double_v);

N "

template<class Backend>
Backend::double_t
common_distance_function(
Backend::double_t input )

/I Algorithm using Backend types

struct ScalarBackend ?truct VectorBackend

{
typedef double double_t; typedef Vc::double_v double_t;
typedef bool bool_t; typedef Vc::bool_v bool_t;
static const bool IsScalar=true; static const bool IsScalar=false;

} static const bool IsSIMD=false; } static const bool [sSIMD=true;

http://code.compeng.uni-frankfurt.de/projects/vc



http://code.compeng.uni-frankfurt.de/projects/vc

Avoiding code duplication

Support of multiple
platforms usually means
multiple versions of source
code

What are the differences
between the two versions of
code shown on the right?

Primarily: types and their
operators, function
attributes (__device ), also
some higher level functions,
e.g. conditional assignment

Avoid code duplication by
abstracting away
differences into common
types or overloaded

}

tem <int N=
~_device__
e const (Bplane)[4][N].

cuda

double Planes<N=::DistanceTolOut(

Vector3Dedouble> const Bpoint,
Vector3Dedouble> const Bdirection) {

double bestDistance = kInfinity;
for (int 1 = @; 1 < N; ++1) {
double distance;
distance = -(plane[8][1]*point[8] + plane[1][1]*point[1] +
plane[2][1i]*point[2] + plane[3][1]);
distance f= (plane[@][i]*direction[®] + plane[1][i]*direction[1] +
plane[2][i]*direction[2]);
bestDistance = (distance = bestDistance) ? distance :

}

return bestDistance;

bestDistance;

}

emplate =igt H=
Vc::double Planes<N=::DistanceToOut(
e const (&plane)[4]1[N],

Vc

Vector3D=Vc::double_v= const Epoint,
Vector3D=Vc::double_wv> const Bdirection) {

Vc::double_v bestDistance = kInfinity;
for (int 1 =8; 1 = N; ++1) {
Vc::double_wv distance;
distance = -(plane[@][i]*point[@] + plane[1][i]*point[1] +
plane[2][1]*point[2] + plane[3]1[1]);

distance f= (plane[@][1]*direction[@] + plane[1][i1]*direction[1] +

plane[2][1]*direction[2]);
bestDistance{distance = bestDistance) = distance;

}

return bestDistance;




Using traits to avoid code duplication

backend/cuda/Backend.h

Intensive kernels are
developed in a generic way,
using only trait-defined
types and functions.

Architecture-specific traits
are created as needed, to
associate generic types and
functions with their arch-
specific types.

Appropriate backends are
requested by #define

namespace vecgeom {
#ifdef VECGEOM_NVCC
inline

#endif

namespace cuda {

struct kCuda {
typedef int
typedef Precision
typedef bool
typedef Inside t
const static bool

int_w;

precision_wv;

bool_wv;

inside w;
early_returns = false;

static constexpr precision_v kOne = 1.8;
static constexpr precision_v kiero = 0.8;

ronst statie hanl

v kTrne = trus-

backend/vc/Backend.h

#tinclude <=Vc/Vcs

namespace wvecogeom {

inline namespace VECGEOM_IMPL_NAMESPACE {

struct kVec {

typedef Vec::int_w int_w;
typedef Vc::Vector<Precision= precision_v;
typedef Vc::Vector<Precisions>::Mask bool_v;
typedef Vc::Vector<eint= inside_w;

constexpr static bool early_returns = false;
const static precisiom_v kOne;
const static precision_v kfero;




[
\

A generic kernel

template <int N> The Backend; can also be the type instead

template <class Bacfﬁﬁﬁg/””’—

VECGEOM CUDA_ HEADER BOTH

typename Backend::Float t Planes<
double const (&plane)[4] [N},
Vector3D<typename Backend::Float t> const &point,
Vector3D<typename Backend::Float_ t> const &direction) {

: :DistanceToOutKernel(

typedef typename Backend::Float t Float t;
typedef typename Backend::bool_v Bool t;

— T
Float t\bggtDistance = kInfinity;
d

Flpat t tance[N];
\i;i; MmUY Arithmetics just works!
distance[i] = -(plane[0][i]*point[0] + plane[l][i]*point[l] +
plane[2][i]*point[2] + plane[3][1]);
distance[i] /= (plane[0][i]*direction[0] + plane[l][i]*direction[l] +
plane[2][i]*direction[2]);
valid[i] = distance[i] =>= 0;

}
for (int i1 = 0; i < N; ++i) {

MaskedAssign(valid|[i] && distance[i] < bestDistance, distance[i],
tbestDistance);

}

return bestDistance:

} MaskedAssign( ) is an optimized if( ) replacement



The X-Ray benchmark

O The X-Ray benchmark tests
geometry navigation in a real
detector geometry

I
NN NN NN

O X-Ray scans a module with virtual
rays in a grid corresponding to pixels
on the final image

O Each ray is propagated from
boundary to boundary

O Pixel gray level determined by
number of crossings

O A simple geometry example
(concentric tubes) emulating a
tracker detector used for Xeon©Phi 2
benchmark W\ E

O To probe the vectorized geometry
elements + global navigation as
task

O OMP parallelism + “basket”
model 18




Vector performance

==t==xeon(R) Phi Vector (ideal) “*Xeon(R) Phi Vector (basket) A Xeon(R) 2x E5-2650 (basket)

6 Vectorization for X-Ray benchmark

O Gaining up to 4.5 from (OMP balanced affinity)

vectorization in basketized
mode

O Approaching the ideal
vectorization case (when no
regrouping of vectors is
needed)

=

n

Speedup vs. scalar version
w A
: fm
<

16 cores/Xeon
61 cores/phi

o
2

5 100 150 200 250 300

O Vector starvation starts when #hreads

o

filling more thread slots than
the core count

0 Performance loss is not O Scalar case: Simple loop over
dramatic pixels
O Better vectorization O Ideal vectorization case: Fill

compared to the Sandy-

Bridge host (expected) vectors with N times the same X-

ray

O Realistic (basket) case: Group
baskets per geometry volume



Performance on KNL

=0 classical == ideal vector == basket
120
. . Scalability
O Afirst glance of results obtained on 100
Intel® Xeon Phi™ CPU 7210 @ o 80
1.30GHz, 64 cores o 60
i
N 0 40
O Scalability comparable KNC vs. KNL 2
for the ideal and basket versions
—~ 0O
(~100x) 0 75 150 225 300
O No major difference observed between Number of threads
"compact” and “balanced” OMP affinity _ _ _
== ideal vector vs. classical == basket vs. classical
175

O GeantV approach gives excellent
benefits with respect to the classical
one (Geant4/ROQOT)

>
K

105

SPEEDUP
\I
o

w
o

Speedup wrt multithreaded classical approach

o

0 75 150 225 300
Number of threads



What about physics?

O Needed a “reasonable” shower development

O Developed a library of sampled interactions and tabulated x-
sections for GeantV

O Back ported to Geant4 for verification and comparison

O A quick tool for developing realistic showers
O Potentially for developing into a fast simulation tool

21
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P hyS I CS S pe e d Speed-up on Xeon Phi(R) COPRQ-712(

for Compton KN model compared to Gea

O Objective: a vector/accelerator friendly re-write of physics

code == T(Geant4)/T(Scalar)

O Started with the electromagnetic processes == T(Geant4)/T(Vector)

O The vectorised Compton scattering shows good
performance gains

O Current prototype able to run an exercise at the scale of an 10 100
LHC experiment (CMS)

50% 1000 5000 10000
Number of tracks

. e . <
O Simplified (tabulated) physics but full geometry, RK =)
propagator in field Q
.. . . . .. i)
[ | Very pre“mmary results needmg Va“daﬂon’ but h|nt|ng S =
to performance improvements of factors .
Proton energy deposit density/primary in ECAL E
= 10 _b —@— Geant4 8
g E —.—l—.—-."'.-\‘..._. —— GeantV-TGeo 9‘?' ................... e s
E o ) Tg i) - —a—KleinNishina ...
3 - Coq E o e —e—BetheHeitler
A = —e— SauterGavrila
8 E , —+— MollerBhabha
i F = —*- SelizerBerger -
g 10! - (— oo | - | ............................ | .....................
u 3 C | 10 T 10 10° 10°
o MS ECO Cores in SMX Cores in GPU Number Of Tracks
,1 % o e

T
Momentum [MeV/c] 10



Yardstick: CMS With Tabulated

Ph

Realistic Scale Simulation

pp collisions @ 14TeV minimum bias events produced by Pythia 8
2015 CMS detector

. . iz T=\\
4T uniform magnetic field @ L
O Decent approximation of the realiiffivist." (GE)
solenoidal field \\ |

Low energy cut at 1IMeV

‘Tabulated’ Physics

O Library of sampled interactions and
tabulated x-sections

Same test (described above) run with both Geant4
and GeantV with various versions of the Geometry library.

24



Putting It All Together - CMS

Yardstick

Semantic changes

Scheduler Geometry Physics Magnetic Field

Stepper
Geant4 only Legacy G4 Various Physics Lists .VG”OUS RS :

implementations

« Tabulated :
: Helix

SEEI OF VecGeom 2016 scalar hvsies
GeantV Cash-Karp

« Scalar Physics
Code

e VecGeom 2015

Vector Physics

GeantV only « VecGeom 2016 vector Code

 Legacy TGeo

Runge-Kutta

Vectorized RK
Implementation

25



Putting It All Together - CMS

Yardstick

Semantic

changes

—

Magnetic Field
Stepper

Scheduler Geometry Physics

Geant4 only Legacy G4 Various Physics Lists
 Tabulated

Geant4 or AR

VecGeom 2016 scqlar@
GeantV )
« Scalar Physics

Code
 VecGeom 2015 @

Vector Physics

GeantV only « VecGeom 2016 vector Code

 Legacy TGeo @

Various RK
implementations

Helix (Fixed Field)

« Cash-Karp
Runge-Kutta

Vectorized RK
Implementation

26



Yardstick

O Some of the improvements can be
back ported to G4

O Overhead of basket handling is
under control

O Ready to take advantage of
vectorization throughout.

Putting It All Together - CMS

Improvement Factors (total) with respect to
G4

Legacy (TGeo) Geometry library:

O 1.5 - Algorithmic improvements in
infrastructure.

2015 VecGeom (estimate)

O 2.4 - Algorithmic improvements in
Geometry

Current VecGeom

O 3.3 2 Further Geometric algorithmic
Improvements and some
vectorization

27



Interaction with Frameworks

O Threading technology
O Currently using std::thread to steer ‘tasks’ (but no thread local storage).
The number of threads used is configurable.

m
O Testing OpenMP/MPI to steer Xeon Phi in offload mode and with separate
processes.

O

Exploring if we can benefit from TBB and how to best coordinate with other
uses

O Coprocessors
O GPU (and Xeon Phi) can be used optionally via plugin
O Enabling use of the coprocessor in offload mode will be done via a function call.

O Coprocessor sharing
O Number of CUDA threads and blocks used by GeantV is customizable

O Newer NVidia hardware support concurrent execution of independent kernels
(in addition to the queue mechanism that was supported for a very long time).

28



Interaction with Frameworks

O Events/Data in and out from Frameworks
O Still under design
O Input

O One or more initial particles coming from one or more events will be
passed on

O Output

O Upon completion of the propagation of all the particles for an event, a
call back will be made (CMSApplication::Digitize for example)

O Should find a way to recast this flow into one of the TBB task mechanism

O Memory handling
O Tied to the number of event in flight and the size of the output information

O High watermark used to trigger a reduction in number of events in flight to
limit memory usage to under the watermark

29



Engagement

O VecGeom alpha release ready to be tested as Geant4 geometry
update.

O Magnetic field code update will also eventually be available to Geant4

O VecCore can be used to develop technology agnostic vector code

O GeantV ready to get out of the laboratory
O Starting to think about/design interfaces for user actions, digitization, etc.

O Welcoming early stakeholders to start reviewing the interfaces needed for a
full application and develop more realistic tests and prototypes

30



Restating our case

O We developed the three main components
O A multithread scheduler to handle the particle baskets
O A vectorised geometry library and navigator
O A vectorised Compton scattering and a tabulated physics list

O Our results indicate that
O Basket handling introduces a minimal overhead
O SIMD gains half an order of magnitude in performance

O An optimistic prediction based on our results gives an improvement
factor beyond the 3.3 currently achieved on CPU

O GPU and Xeon Phi improvement factors are expected to be higher

We are on track with achieving our objectives (see slide5:a2to 5
speedup)

31



Thank you!
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Next steps

Repeat the test with the introduction of
O Vectorised EM physics
O Vectorised transport in Mag Field

Develop simple classes for materials and particles to be able to run on
coprocessors to enable physics on the GPU and Xeon Phi full CMS yardstick

... implementing a “preliminary performance yard-stick” combining all prototype
features

O SIMD gains in the full CMS experiment setup

O Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi® and
GPGPU

O Scalability and NUMA awareness for rebasketizing procedure
O ... achieving these just moves the target a bit further

... testing scaling up to large node count through MPI, e.g. on CORI
O Input distribution and Output gathering.
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GeantV: (familiar) motivations

O Performance of our code scales 107
with clock cycle (hence is stagnant!)
10¢ .
O Needs will increase more than Intel CPU Trends A
tenfold and the budget will be 105 ‘m'“““’“‘%
constant at best o trdns|Gtors /
O HEP code needs to exploit new
architectures and to team with other 10°
disciplines to share the optimization
effort 102
O Data & instruction locality and 10 N .
vectorisation ] Sower A< /3'" :
T e T
O Portability, better physics and

optimization will be the targets |
70 75 80 85 90 95 00 05 10

O Simulation can lead the way to - Seeking ways to write code portable
show how to exploit today's CPU's between CPU with vector units or not
resources more effectively in and accelerators (GPU, Xeon Phi)

complex applications
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GeantV Output

O Physics simulation produces ‘hits’ i.e. energy depositions in the
sensitive parts of the detector

O Those hits are produced concurrently by all the simulation
(TransportTracks) threads

O Thread-safe gueues have been implemented to handle asynchronous
generation of hits by several threads

O Dedicated Output thread transfers the data from the output queues to
ROOT I/O



Hits/digits 1/O

O “Data” mode

O Send concurrently data to one
thread dealing with full I/O

ﬁransportTracks Threa N
UserHit w

[_DDDD GeantBlock i
BB . |

GeantBIo@C\rray

[:]D @tput Thread \
OOO0000

Number of slots

O “Buffer’ mode RO

O Send concurrently local trees
connected to memory files produced by
workers to one thread dealing with
merging/write to disk

E 1M

O Integrating user code with a
highly concurrent framework
should not spoil performance

4

w
w

oy
13

relative time overhead wrt no 1/O
— N

o
o

o

GeantV concurrent I/O
8 data producer threads + 1 1/0 thread

—a&—Data I/O (old)
—o—Buffer I/O (new)

/
A
0 20 40 60 80 100 120

Throughput [MB/s]
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Geometry performance on KNL

Intel® Xeon Phi™M CPU 7210 @

O Running set of standard geometry 1 30GHz. 84 cores

benchmarks using UME::SIMD
backend. BOX, AVX2 (KNL)

m scalar mvector
O Measuring vector versus scalar
speed-up using AVX2 and AVX512, for
CPU-intensive geometry navigation
methods

O Observe super-linear speedup for
some methods

el Inside SafetyToln DistanceToln
. . L . vector flow BOX1 AVX512
O Investigating if it is compiler-related ot (KNL)

daughter volume 18

E scalar ®=vector

O Vector interface is better than e
scalar one (~x2 factor) w/o auto- deghter frame
vectorization

distToOutside
daughtervol

O Found ~10% scalar performance
improvement on KNL switching off |
auto-vectorization and setting
different ISA options (AVX512 vs
AVX2)

SafetyToln DistanceToln
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10

Absolute times (s)

0.01

AV X-512 versus AVX2 on KNL

O High vectorization intensity achieved for both ideal and

basketized cases

O AVX-512 brings an extra factor of ~2 to our benchmark

Vector ideal

-0-AVX2 -0-AVX512

>—o
0——o

0 75 150 225 300
Number of threads

Vector ideal

2.20

2.10

n
o
o

=
©
=}

T(AVX2)/T(AVX512)
o
o

0 75 150 225 300
Number of threads
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NUMA awareness

O Latency of memory access depends on
“locality distance”

O Libraries used:

O libnuma, numactl - NUMA memory &
thread affinity policies

O Developed by SUSE Labs & SGI
O Most linux flavors, LGPL license

O Portable Hardware Locality (hwloc) — -
NUMA topology detection, APl & tools

O Developed within Open MPI

\
Scheduler,
Transp

ort

—]

Basketizer

O NewBSD license Wl Trocks e s )
g o R )

O Layer on top of libnuma & libhwloc to
control affinity

izer

Basketizer
In

Transp 1
ort
\SchedulerQ

: Transp
ort
Scheduler, )

Basket




NUMA aware GeantV

to be tested on KNL (snc mode)

O Replicate schedulers on NUMA scheduler. Scheduler
CIUSterS Transport ' - = Transport

O One basketizer per NUMA node

T

l':' I
3

Tracks

O 2 supported modes

O MPI dispatch running one GeantV : >
Process per NUMA node : . cos;g;fhbv

Inte == Inect
O Single process spawning one

scheduler per NUMA node
ks
Scheduler,

1111
Basketizer
Basketizer

O Loose communication between Tracks ‘
NUMA nodes at basketizing .
step Scheduler,

O Currently under development




O High vectorization intensity achieved for both ideal and basketized

10

Absolute times (s)

0.01

cases
O AVX-512 brings an extra factor of ~2 to our benchmark
Vector ideal Vector ideal
2.20
-O0-AVX2 -O-AVX512

n
o
S

T(AVX2)/T(AVX512)
i
o

1.80
1.70
—0— 5
o~ 1.60
- —O 0 75 Nii22 s 225 300
75 150 225 300

Nthreads
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Scalablility on many-core

O Fine grain MT preventing

to scale to high number
of threads

O Issue for many core
architectures

Split application in
(NUMA-aware) clusters
and use a common event
gueue for workload
balancing

O Lightweight/no
interaction

O Memory friendly

O Possible to extend
across sockets, replacing
the concurrent queue
with an event server

andrei.gheata@cern.chu&.trd@nmbrﬁ)hannels

developing GeantV

d
ACross
socke
fs

g r
i)

|

CPU ‘

CPU2 ‘

Process —
Rebasketizing
2x l QIEI)LLB llll%neurgbgr()lfat)'nsp U E5_263O yxﬁak@w%iﬂé%ﬁ‘e—!a threads
; . e .

{ ot E [ L4
N E@,,{__ yAmE wm»
Lo o . #+%+-+-+-

Flog < B A
i T +s _ £ [
PP L ks
i Sl AT
S ) .l""\ I | "Lock-free algorithm
Algorithm using spinlocks 4 4 (memory polling)

P
20 22 24
s abreade

10 12 14 16 18 20 22 24 "2 4 6 B 10 12 14 16 18
e
|

(—
%
12
B rocess/thre —
—
%
2 2
N Process/thre R
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Going CUDA — beyond writing custom

kernels

GeantV scheduler can communicate with arbitrary device brokers

O Getting work and processing in native mode or processing steps of work and sending
data back to the host

O Implemented so far: CUDA broker, KNC offload interface. KNL will work in native

mode
Generator — Basketizer Host code instrumented
v | | | | | | | | with __host____device__
Macros
CPU stepper KNC broker Insfrumenf'ed methods
MPI broker (multithreading) GPU broker (offload) compiled in ::cuda
namespace
I 1T 1 1 L1 1 Library compiled for host
J,T l’T and device (nvcc)
Geometry Physics
P M GPU broker dealing with
- F— initialization on device
and data copying
Device stepper
(multithreading)
Geometry Physics

andrei.gheata@cern.ch : Experiences from
developing GeantV



Why not Geant4+?

O Extensive prototyping and analysis has convinced us that
“vectorisation” of Geant4 was not achievable without a major
rewrite of the code

O No hotspots (1)

O Virtual table structure very deep and complex (1990’s style)

O Codebase very large and non-homogeneous

O Auto-vectorization can only have small and very localized effect

O No criticism, but even the best things age (born 1994)
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libstdc++.50.6.0.17 libG4particles.so
operator new(] G4NucleiProperties::GetNucle
0.59% 0.70%
(0.02%) (0.25%2
2471396x 26433

0.57% 2.69%
2471396x% 13528463x

libm-2.12.s0
__ieee754_exp
2.69%
(2.68%)
13528463x

-.12:s0
malloc
6.45%

(1.92%)
26108784x

4.53%
26108531

libc-2.12.s0
_int_malloc
4.53%

(4.34%)
26108835x




Geant4 Profiling Example: Call Map

valgrind / kcachegrind

I—lwrr rl “-— SEl=ERE rv
r

SO AT ITEILL ] l
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| 7 o ‘ £ M Ss 2
— ] P— : 35 3238
[ ' | det —
- | £ Fr=s
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il [ | 1 Flerrme.
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— 3 i 8
= § 133

T BT AR Fi
T ﬂrrrr l_l_F

[ | e ey

1

e

Section(double, double, double) | _
14808816 =

.,—[:

o ——r

= L l'“Wi o o o]

rm— e p— gy l‘_r-'r'rrr'rr
”ﬂ: W o il [ﬁlr;

Fo | e =1 |

= |k 2
o |
G4
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ComputeDMicroscopicCross

.

5 T
JE=:

: ol
i

I
9
k:

| 0] | —

11

—l-r | 5

P articleChangeF orTranspor
-7 || caphy

No easy to address hotspots




Deal with particles in parallel

Output buffer(s)

A dispatcher thread puts
particles back into
transport buffers

Everything happens
asynchronously and
in parallel

The challenge is to
minimise locks

Keep long vectors

Avoid memory
explosion

Particles are transported
per thread and put in
output buffers
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Explicit vectorization

Explicit SIMD vectorization
can be implemented directly
using intrinsics, but a
vectorization library already
brings many utilities pre-
defined, like common math
operators and functions.

Algorithmic code

Backend

- e I——

VecGeom currently works with :
V¢ library, by Mathias Kretz, : Library : D
but other libraries can be S L ETTETF CYRYYYRTTEE
easily plugged in (Agner Fog's
VCL, Intel's VML, Cilk Plus,
).

A new backend is maybe all
that is needed.




Egep [MeV/g/cm’]

Physics developments: Multiple

Scatterino

E,=0.521 [MeV] e- in Al; #primaries = 1x10°

. lEx.
G4-opt0; RT =255.36 [s]
—— G4-GS-new; RT =253.2 [s]

§ Source: M.Novak

— Sandia dai

_— G4 fast

—— G4-GS-old; RT=431.86 [s] «— (G4 precision
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visible energy (E/E)

Time (rel. to Urban opt0)

0.22

E, =10 GeV e ATLAS bar. sampling cal. 2.3 mm Pb/ 5.7 mm lAr
T

lar

0215
(] & @
021
‘ ° [ : : : : oo
0.205 ¢ 33
02
El
0.195 | . . . o
Physics validation 3
0.19 | )
0.185 -
0.18 |
° GS -opt0; R=0.1
0.175 Urban -opt0; R=0.04|
i ° U{ban -opt3; R.=Q.04 : : i
0,001 0.01 0.1 1 10 100
Ep =10 GeV e ATLAS bar. sampling cal. 2.3 mm Pb/ 5.7 mm lAr
1.1 :
1F L ] ® ® ] oo @ o0 E
L ]
09 4
[ ]
08 & bilde
4 [ X ]
07 @
| Up to 30% faster in sca
GS -opt0; R=0.1
Urban -opt0; R=0.
0.5 : : :
0.001 0.01 0.1 1 10 100
cut [mm]

Urban-opt0 Urban-opt3
100 27241 15510 51862
10 35789 21898 64588
7 36505 22457 65431
3 38760 24270 68165
1 41341 26216 71677
0.7 42182 26867 72870
0.3 45024 29348 81452
a1 50420 34467 87487
0.03 59302 43295 95970
0.01 78181 62549 114558

Table: number of charged steps

The new algorithm is being

now vectorised for GeantV

It is In an experimental
physics list for Geant4

O Candidate to become the
default
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The problem

Detailed simulation of subatomic particle
transport and interactions in detector
geometries

Using state of the art physics models,
propagation in electromagnetic fields in
geometries having complexities of
millions of parts

Heavy computation requirements,
massively CPU-bound, seeking
organically HPC solutions...

The LHC uses more than 50% of its
distributed GRID power for detector
simulations (~250.000 CPU years
equivalent so far)

http://atlas.ch
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Geant4 Geometry

A large collection of solids are defined in Geant4:

4030 *
y 20,020 0 2

G4Para
GA4Trap (parallelepiped)

G4Torus

Consult
Section 4.1.2 of Geant4 Application
A ;

G4Sphere G40rb sIl)rfzavelzgers Guide for all available

G4Cons (full solid sphere) PeS:

G4Polycone, G4 Polyhedra, G4Hype,
G4TwistedTubs, G4TwistedTrap

G4UnionSolid

Also Boolean
operations such as:
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Geant4 Transportation

A GA4Track also includes the info for transporting the particle
through the detector = in G4 we typically use Particle = Track

object
G4DynamicParticleJ
[ G4Track has a \,, a

[G4ParticIeDefinition]

T2

-

(world volume)

T 1 (priimary track)

/

I5
Té6 T4| 1218

(secondar
T7v 13 T8 y tfracks)

Tracking follows
“last in first out” rule:
T1->T4->T3->T6->T7 -
>T5->T8->T2

The G4Track information is updated after every G4Step

> A G4Step is a step in the particle (tfrack) propagation

» The user defines a maximum step length but steps also end
when a physics process is invoked and at volume boundaries

=

Pre-step point

Post-step point
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Geant4 Magnetic Field

Partficle propagated in EM field by integration of equation of
motion using the Runge-Kutta method (others also available)

miss distance

Step --.--.-n--.----..-.-n-

Mr.;“a-lutrajectory ‘
» Curved path broken into linear chord segments to minimize the
saqitta (maximum chord-trajectory distance)

» Chords used to intferrogate navigator on whether the track has
crossed a volume boundary

» miss distance parameter used to tune volume intersection
accuracy

G4 supports user defined, uniform, and non-uniform (static or
time dependent) magnetic fields
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Specialized Geometry Library.

Backward compatibility with ROOT and Geant4
Continue the already started AIDA USolids project

Numerical simulation have special requirements on numerical stability (double vs
float, no leaks, we transport things across boundaries often not the case in 3D
graphics engines)

HEP use specialized volumes not existing in external packages (polycone) and we
can put a lot of domain specific knowledge to accelerate things

Single solution for CPU and GPU

Rely on special functions "safety" which might not exist in classical 3D rendering
engines (which concentrate on hit detection)

Need an exact volume representation (and not a triangle approximation).

Different scale than most 3D graphics engines (that often have far fewer things to
treat) 56



