
Prin%ng:	
  
This	
  poster	
  is	
  48”	
  wide	
  by	
  36”	
  
high.	
  It’s	
  designed	
  to	
  be	
  printed	
  on	
  
a	
  large-­‐format	
  printer.	
  
	
  

Customizing	
  the	
  Content:	
  
The	
  placeholders	
  in	
  this	
  poster	
  are	
  
formaEed	
  for	
  you.	
  Type	
  in	
  the	
  
placeholders	
  to	
  add	
  text,	
  or	
  click	
  
an	
  icon	
  to	
  add	
  a	
  table,	
  chart,	
  
SmartArt	
  graphic,	
  picture	
  or	
  
mul%media	
  file.	
  
To	
  add	
  or	
  remove	
  bullet	
  points	
  
from	
  text,	
  click	
  the	
  Bullets	
  buEon	
  
on	
  the	
  Home	
  tab.	
  
If	
  you	
  need	
  more	
  placeholders	
  for	
  
%tles,	
  content	
  or	
  body	
  text,	
  make	
  
a	
  copy	
  of	
  what	
  you	
  need	
  and	
  drag	
  
it	
  into	
  place.	
  PowerPoint’s	
  Smart	
  
Guides	
  will	
  help	
  you	
  align	
  it	
  with	
  
everything	
  else.	
  
Want	
  to	
  use	
  your	
  own	
  pictures	
  
instead	
  of	
  ours?	
  No	
  problem!	
  Just	
  
click	
  a	
  picture,	
  press	
  the	
  Delete	
  
key,	
  then	
  click	
  the	
  icon	
  to	
  add	
  your	
  
picture.	
  

Convolutional Neural Network (CNN)

●  Several convolutional and pooling layers 

followed by fully connected layers 

●  Use features learned from those layers to 

perform classification or regression tasks

. 

Why a convolutional neural network? 

●  Data captured by detectors can be 

modeled as 2-D image (top right)

●  CNN captures our intuition about local 

structure and translational invariance




Exploring Raw HEP Data using Deep Neural Networks


 Evan Racah1,  Wahid Bhimji1, Seyoon Ko2, Peter Sadowski3,  Craig Tull1, Sang-yun Oh4, Lisa Gerhardt1 , Prabhat1 

 

Introduction 
High Energy Physics has made use of artificial neural networks for some 
time. Recently, however, there has been considerable development outside 
the HEP community, particularly in deep neural networks for the purposes of 
image recognition. We describe the deep-learning infrastructure at NERSC, 
and analyses built on top of this. These are capable of revealing meaningful 
physical content by transforming the raw data from particle physics 
experiments into learned high-level representations using deep convolutional 
neural networks (CNNs), including in unsupervised modes where no input 
physics knowledge or training data is used.

Here we describe in detail a project for the Daya Bay Neutrino Experiment 
showing both unsupervised learning and how supervised convolutional deep 
neural networks can provide an effective classification filter with significantly 
better accuracy than other machine learning methods. These approaches 
have significant applications for use in other experiments triggers, data 
quality monitoring or physics analyses.




Use Case: Daya Bay


Methods


Conclusions


Deep learning at NERSC Results
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The Daya Bay experiment conducts precision measurements of reactor 
neutrinos. The experiment is comprised of several antineutrino detectors 
(shown above left) comprised of 192 PMTs in a cylindrical arrangement. 
Backgrounds include Muons, instrumental effects, such as so-called 'Flashers', 
caused by misfiring photomultiplier tubes; and rarer backgrounds, such as the 
radioactive decay of 'Lithium-9', that can look very like signal events. 

Separating out signal from background currently relies on simple cuts on 
physics-motivated features. These may miss new sources of background (such 
as 'Flashers' that weren't known before construction) and introduce large-
systematic uncertainties on determination of signal-like backgrounds such as 
that caused by Lithium decay. Deep learning could help improve sensitivity, 
identify new unexpected sources of background; and determine structure in 
the signal as well as in the different types of background.







‘Cori’ supercomputer:

Phase 1: 1630 Haswell Nodes (available now)

Phase 2: 9300 Knights-Landing (KNL)

 Nodes  (coming later this year) 

28 PB Lustre Filesystem

1.5 PB NVRAM-based ‘Burst Buffer’


Deep Learning Frameworks: 

Theano  - for flexibility in method development

Keras / Lasagne - Theano based but higher-
level for ease of use 

Caffe - including IntelCaffe with performance 
highly optimised for KNL 

Neon - optimised for high performance and 
parallel implementations 

TensorFlow -  ease of use and flexibility in 
addition to a large, growing community


Interactive computing:

Frameworks available within a deeplearning 
kernel on the NERSC Jupyter service 
(ipython.nersc.gov): allows for interactivity and 
scaling up to runs on Cori 






Architectures used are shown in the tables 
(right). Networks were implemented in Neon

Supervised: We use real data events 
labelled by the official collaboration 
analyses to train a CNN. Hyperparameter 
optimisation (for the number of filters and 
the size of the fully connected layer) are 
performed with Spearmint 

Unsupervised: We learn a feature vector 
for the data using a convolutional 
autoencoder with no input physics labels.

We visualize these vectors using t-SNE to 
see which events cluster closer together. 





 
 


Unsupervised Learning: 

What is convolutional autoencoder?

●  A neural network where the target output is exactly the input. 

●  Consists of an encoder, layers that transform the input into a feature vector 

at the output of the middle layer (often called bottleneck layer or hidden 
layer), and a decoder, which usually contains several layers that attempt to 
reconstruct the hidden layer output back to the input.


 














https://swarbrickjones.files.wordpress.com/2015/04/conv_autoencoder.png


Why a convolutional autoencoder?

●  Assume that most of the data clusters around a low dimensional manifold

●  A regularized autoencoder attempts to discover the structure of this manifold 

by having the network to reconstruct the input despite some constraint, like 
smaller hidden layer dimensionality than that of input


●  Forces the network to learn nonlinear, translation invariant and equivariant 
factors of variation between images - should differentiate types of events


Implementation


Other HEP NN projects at NERSC  
Ice Cube: Applying machine learning techniques to improve  astrophysical 
neutrino detection to probe the origins of these particles

ATLAS: (HL-LHC)  Tracking using recurrent NNs (such as LSTMs)

Calorimeter:  using semi-supervised CNNs on calorimeter clusters and 
cells for multi-jet new physics analyses

Probabilistic Programming:  coupling inference to detector simulations 
for new physics detection 

Cosmology image analysis:  using CNNs to find clusters of galaxies and 
filaments in large cosmology simulations




We apply unsupervised convolutional neural nets to raw data from the Daya Bay 
experiment and have shown that the network can successfully learn patterns of 
physics relevance.  Such unsupervised techniques could be used for a wide 
variety of particle physics experiments to aid in trigger decisions, in evaluating 
data quality, or to discover new instrument anomalies without having to engineer 
features.

We have also demonstrated the superiority of convolutional neural networks 
compared to other supervised machine learning approaches for running directly 
on raw particle physics instrument data. This offers the potential for use as fast 
triggers or in final analyses. 

We are now focussing on more challenging backgrounds such as ‘Lithium-9’ 
that dominate the current systematic uncertainties from the experiment as well 
as developing new state-of-the-art methods incorporating denoising or 
variational autoencoders and semi-supervised approaches.


Convolution operation


Deconvolution operation


https://www.nersc.gov/users/data-
analytics/data-analytics/deep-learning/




Supervised: Our deep CNN 
achieves > 97% classification 
accuracy across different classes 
of physics events (table right). As 
shown  this is also significantly 
better than other machine learning 
approaches (k-NN and SVM) for 
this data.

Unsupervised: The deep  
autoencoder successfully 
identifies patterns of physics 
interest. The plot on the right 
shows t-SNE representation of 
learnt convolutional autoencoder 
(arbitrary axes) which clearly 
shows clustering of different signal 
and background events. Classes 
are labelled in plot but those labels 
are not used for training.  Insert 
shows original and reconstructed 
image of one IBD delay event
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