First observation of $\pi^- K^+$ and $\pi^+ K^-$ atoms, their lifetime measurement and πK scattering lengths evaluation

Leonid Afanasyev on behalf of the DIRAC collaboration

Joint Institute for Nuclear Research, Dubna, Russia

$38^{\rm th}$ International Conference on High Energy Physics, CHICAGO, $3^{\rm nd}$ – $10^{\rm th}$ August 2016

DIRAC collaboration

2 / 48

Contents

- Theoretical status of πK scattering lengths
- Published results on πK atoms
- Method of πK atom observation and investigation
- DIRAC setup
- Observation of πK atoms
- πK atoms with 450 GeV beam

Theoretical status of πK scattering lengths

πK scattering lengths

I . ChPT predicts s-wave scattering lengths:

 $L^{(2)}$, $L^{(4)}$ and 1-loop $a_0^{1/2} = 0.19 \pm 0.02, \ a_0^{3/2} = -0.05 \pm 0.02$ V. Bernard, N. Kaiser. U. Meissner - 1991 $a_0^{1/2} - a_0^{3/2} = 0.24 \pm 0.03$ $a_0^{1/2} - a_0^{3/2} = 0.23 \pm 0.01$ A. Roessl - 1999 $L^{(2)}$, $L^{(4)}$, $L^{(6)}$ and 2-loop J. Bijnens, P. Dhonte, $a_0^{1/2} - a_0^{3/2} = 0.267$ P. Talavera - April 2004

II . Roy-Steiner equations:

$$a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$$

P. Büttiker et al. - 2004

4 D N 4 B N 4 B N 4 B N

Leonid Afanasyev (JINR)

ICHEP 2016, August 6 5 / 48

$\pi {\it K}$ scattering lengths in LQCD

III . S-wave πK scattering has also been studied extensively in the framework of lattice QCD

Recently predictions for πK scattering have been obtained:

 $a_0^{1/2} = 0.1725_{-0.0157}^{+0.0026}, a_0^{3/2} = -0.0574_{-0.0060}^{+0.0029}$ S.R. Beane et al, Phys. Rev. D77 (2008) 094507 $a_0^{1/2} = 0.183 \pm 0.039, a_0^{3/2} = -0.0602 \pm 0.0040$ C.B. Lang et al., Phys. Rev. D86 (2012) 054508 $a_0^{-} = \frac{1}{3}(a_0^{1/2} - a_0^{3/2}) = 0.0811 \pm 0.0143$ K. Sasaki et al., Phys. Rev. D89 (2014) 054502

< ロト < 同ト < ヨト < ヨト

Published results on on πK atoms

DIRAC	Observed	$ au_{1s}(10^{-15}s)$	Reference
data	events	value stat syst tot	
2007	$173\pm54~(3.2\sigma)$	> 0.8 at $\mathit{CL} = 90\%$	6 PL B 674 (2009) 11
2008-10	$178 \pm 49 \ (3.6\sigma)$	$2.5^{+3.0+0.3}_{-1.8-0.1} \begin{bmatrix} +3.0\\ -0.18 \end{bmatrix}$	PL B 735 (2014) 288

Experimental data on the πK low-energy phases are absent.

$\pi^- K^+$ and $\pi^+ K^-$ atoms lifetime

 πK -atom $(A_{\pi K})$ is a hydrogen-like atom consisting of K^{\pm} and π^{\mp} mesons: $E_B = -2.9 \text{ keV}, r_B = 248 \text{ fm}, p_B \approx 0.8 \text{ MeV}/c$

The πK -atom lifetime (ground state 1S), $\tau = \frac{1}{\Gamma}$ is dominated by the annihilation process into $\pi^0 K^0$:

$$A_{K^+\pi^-} o \pi^0 K^0, A_{\pi^+K^-} o \pi^0 \bar{K^0}$$

 $a_{15,\pi^0 K^0} = R_K \mid a_0^{1/2} - a_0^{3/2} \mid^2 \text{ with } \frac{\Delta R}{R} \approx 2\%$

J. Schweizer - 2004

From Roy-Steiner equations:

$$a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015 \rightarrow \tau = (3.7 \pm 0.4) 10^{-15} s$$
If $\frac{\Delta\Gamma}{\Gamma} = 10\% \Rightarrow \frac{\Delta|a_0^{1/2} - a_0^{3/2}|}{|a_0^{1/2} - a_0^{3/2}|} = 5\%$

Method of πK atom observation and investigation

A B + A
 B + A
 B
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Method of and πK atom observation

Coulomb pairs and atoms

For the charged pairs from the short-lived sources and small relative momentum Q there is Coulomb interaction in the final state. This interaction increases the production yield of the free pairs with Q decreasing and creates atoms.

There is precise ratio between the number of produced Coulomb pairs (N_C) with small Q and the number of atoms (N_A) produced simultaneously with these Coulomb pairs:

$$N_A = K(Q_0) \cdot N_C \ (Q \le Q_0), \ \frac{\delta K(Q_0)}{K(Q_0)} \le 10^{-2}$$

$$n_A \text{ - atomic pairs number, } P_{br} = \frac{n_A}{N_A}$$

ICHEP 2016. August 6

11 / 48

Leonid Afanasyev (JINR)

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on πK atom lifetime for Nickel target with thicknesses $108\mu m$ and $98\mu m$

DIRAC setup

э

・ロト ・回ト ・ヨト ・

Experimental setup

1 Target station with Ni foil; 2 First shielding; 3 Micro Drift Chambers; 4 Scintillating Fiber Detector; 5 Ionization Hodoscope; 6 Second Shielding; 7 Vacuum Tube; 8 Spectrometer Magnet; 9 Vacuum Chamber; 10 Drift Chambers; 11 Vertical Hodoscope; 12 Horizontal Hodoscope; 13 Aerogel Čerenkov; 14 Heavy Gas Čerenkov; 15 Nitrogen Čerenkov; 16 Preshower; 17 Muon Detector

Setup resolutions

SFD						
Coordinate pred	cision	$\sigma_X = 60$	μm	$\sigma_Y = 60 \mu m$	$\sigma_W = 120 \mu m$	
Time precision $\sigma_X^t = 38$		0 <i>ps</i>	$\sigma_Y^t = 512 ps$	$\sigma_W^t = 522 ps$		
DC				VH		
Coordinate	$\sigma =$	85µ <i>m</i>	Time precision $\sigma = 100p$		$\sigma = 100 ps$	

Spectrometer				
Relative resolution on the particle momentum in L.S. $3 \cdot 10^{-3}$				
Precision on Q-projections	$\sigma_{Q_X} = \sigma_{Q_Y} = 0.5 \ MeV/c$	$\sigma_{Q_L} = 0.5 MeV/c (\pi\pi)$		
$\sigma_{Q_L} = 0.9 MeV/c (\pi K)$				

Trigger efficiency 98%	for pairs with	$Q_L < 28 \ MeV/c$
		$Q_X < 6 MeV/c$
		$Q_Y < 4 MeV/c$

ICHEP 2016, August 6 15 / 48

3

(日) (四) (王) (王) (王)

Experimental conditions

Primary proton beam	24 <i>GeV/c</i>
Beam intensity	$(10.5 \div 12) \cdot 10^{10}$ proton/spill
Single count of one IH plane	$(5\div 6)\cdot 10^6$ particle/spill
Spill duration	450 <i>ms</i>

Ni target				
Purity	99.98%			
Target thickness (year)	98 \pm 1 μ m (2008)	$108 \pm 1 \; \mu m \; (2009 - 2010)$		
Radiation thickness	$6.7 \cdot 10^{-3} X_0$	$7.4 \cdot 10^{-3} X_0$		
Probability of inelastic proton interaction	$6.4 \cdot 10^{-4}$	$7.1 \cdot 10^{-4}$		

Ξ.

(日) (四) (王) (王) (王)

Observation of πK atoms

э

イロト イポト イヨト イヨト

ICHEP 2016, August 6 18 / 48

Background suppression for $\pi^- K^+$

A D > A A P >

Background suppression for $\pi^+ K^-$

< D > < A

$\pi^- K^+$ and $\pi^+ K^-$ atoms - run 2007-2010

Statistics with Platinum (2007) and Nickel (2008-2010) targets

πK atoms - run 2007-2010

Statistics with Platinum (2007) and Nickel (2008-2010) targets

Criterion $Q_T < 4MeV/c$. $\chi^2/ndf = 41/37$. In absense of "atomic pairs" $\chi^2/ndf = 73/38$

Statistics πK atomic pairs

Analysis	$\pi^- K^+$	$\pi^+ K^-$	π^-K^+ and π^+K^-
Q	$243 \pm 51 (4.7\sigma)$	$106 \pm 32 \ (3.3\sigma)$	$349 \pm 61 \ (5.7\sigma)$
$ Q_L $	$164 \pm 79 \ (2.1\sigma)$	$67 \pm 47 \ (1.4\sigma)$	$230 \pm 92 \ (2.5\sigma)$
$ Q_L , Q_T$	237 ± 50 (4.7 σ)	$78 \pm 32 \ (2.5\sigma)$	$314 \pm 59 \ (5.3\sigma)$

3

(日) (四) (王) (王) (王)

Systematic errors

Sources of systematic errors	σ_Q^{syst}	$\sigma_{Q_L}^{\rm syst}$	$\sigma^{\rm syst}_{ Q_L ,Q_T}$
Uncertainty in Λ width correction	0.8	3.0	2.0
Uncertainty of multiple scattering in Ni target		0.7	2.7
Accuracy of SFD simulation	0.2	0.0	0.1
Correction of Coulomb correlation function on finite size production region	0.0	0.2	0.1
Uncertainty in πK pair laboratory momentum spectrum	3.3	5.4	7.8
Uncertainty in laboratory momentum spectrum of background pairs	6.6	1.6	5.4
Total	8.6	6.4	10.1

Leonid Afanasyev (JINR)

 πK atoms

<□▶ < □▶ < □▶ < 三▶ < 三▶ 三 つ Q (* ICHEP 2016, August 6 24 / 48

Observation of πK atoms

CERN-EP-2016-128 ; arXiv:1605.06103. Submitted to Phys. Rev. Lett.

Break-up probability of πK atoms

Year	Target	Q	Q_L	$ Q_L , Q_T$		
	$\pi^- K^+$					
2007	Pt 26 μ	1.09 ± 0.52	1.42 ± 0.95	1.44 ± 0.59		
2008	Ni 98 μ	0.32 ± 0.20	0.41 ± 0.34	0.44 ± 0.22		
2009	Ni 108 μ	0.23 ± 0.16	0.04 ± 0.22	0.16 ± 0.15		
2010	Ni 108 μ	0.41 ± 0.17	0.15 ± 0.20	0.33 ± 0.16		
		$\pi^+ k$	(-			
2007	Pt 26 μ	1.2 ± 1.2	0.9 ± 1.6	0.27 ± 0.56		
2008	Ni 98 μ	0.52 ± 0.39	0.50 ± 0.62	0.42 ± 0.38		
2009	Ni 108 μ	0.29 ± 0.20	0.49 ± 0.37	0.33 ± 0.24		
2010	Ni 108 μ	0.33 ± 0.22	-0.13 ± 0.20	0.21 ± 0.20		

ICHEP 2016, August 6 26 / 48

3

イロト イポト イヨト イヨト

Systematic errors for break-up probability in Nickel target

Sources of systematic errors	Nickel target		et
	σ_Q^{syst}	$\sigma_{Q_L}^{\rm syst}$	$\sigma^{syst}_{ Q_L ,Q_T}$
Uncertainty in Λ width correction	0.0006	0.0013	0.0006
Uncertainty of multiple scattering in Ni target	0.0051	0.0006	0.0036
Accuracy of SFD simulation	0.0002	0.0001	0.0003
Correction of Coulomb correlation function on finite size production region	0.0001	0.0000	0.0000
Uncertainty in πK pair laboratory momentum spectrum	0.0052	0.0031	0.0050
Uncertainty in laboratory momentum spectrum of background pairs	0.0011	0.0010	0.0011
Total	0.0074	0.0036	0.0063

< D > < A

Systematic errors for break-up probability in Platinum target

Sources of systematic errors	rstematic errors Platinum target		rget
	σ_Q^{syst}	$\sigma_{Q_L}^{\rm syst}$	$\sigma^{syst}_{ Q_L ,Q_T}$
Uncertainty in Λ width correction	0.011	0.099	0.0732
Uncertainty of multiple scattering in Ni target	0.0087	0.0086	0.0141
Accuracy of SFD simulation	0.	0.	0.
Correction of Coulomb correlation function on finite size production region	0.0001	0.0002	0.0002
Uncertainty in πK pair laboratory momentum spectrum	0.089	0.27	0.25
Uncertainty in laboratory momentum spectrum of background pairs	0.22	0.068	0.21
Total	0.24	0.29	0.34

< D > < A

Lifetime evaluation

Probability of πK atom breakup in Platinum target vs the atom lifetime

Probability of πK atom breakup in Nickel target vs the atom lifetime

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

πK atom lifetime estimation

Analysis with Q_L, Q_T : preliminary, to be published.

Likelihood function for πK atom lifetime measurement

Le

Relation between measured value πK atom lifetime (τ) and a S-wave isospin-odd πK scattering length $|a_0^-|$

$$\tau = (3.8^{+3.3}_{-2.0}|_{stat} \ \frac{1.0}{-0.6}|_{syst}) \ fs = (3.8^{+3.5}_{-2.1}|_{tot}) \ fs$$

$$|a_0^-|M_{\pi} = 0.087^{+0.043}_{-0.024}$$
CHEP 2016, August 6 30 / 48

πK atom lifetime estimation

Analysis with Q: preliminary, to be published.

Likelihood function for πK atom lifetime measurement

Leo

Relation between measured value πK atom lifetime (τ) and a S-wave isospin-odd πK scattering length $|a_0^-|$

$$\tau = (5.5^{+4.9}_{-2.8}|_{stat} + 0.9_{-0.5}|_{syst}) fs = (5.5^{+5.0}_{-2.8}|_{tot}) fs$$

$$|a_0^-|M_{\pi} = 0.072^{+0.031}_{-0.020}$$

$$|B| = \pi 6 \text{ atoms} \qquad |CHEP 2016, August 6 = 31/48$$

Production of $\pi^+\pi^-$ and πK atoms at 450 GeV/*c* proton beam

э

Increasing of statistic with 450 GeV/c proton beam

The yield w of charged particles, and $\pi^+\pi^-$ -, π^+K^- - and π^-K^+ - atoms into DIRAC setup acceptance.

$ heta_{lab}$	5.7°	4°	2°	0°			
Ep	24 GeV	450 GeV	450 GeV	450 GeV			
	Yield charged particles						
W _{ch}	0.022	0.14	0.50	2.9			
W_{ch}^N	1	6.4	22.7	132			
	Yield	of $\pi^+\pi^-$ at	oms				
$W_A imes 10^9$	1.94	34.	69.	89.			
W_A^N	1.	17.3	35.4	45.9			
$(W_A/W_{ch})^N$	1.	2.4	1.2	0.27			
	Yield o	of π^+K^- at	oms				
$W_{A} imes 10^{9}$	0.217	8.1	16.3	23			
W_A^N	1.	37.5	75.	106.			
$(W_A/W_{ch})^N$	1.	10.6	5.8	1.2			
Yield of $\pi^- K^+$ atoms							
$W_A imes 10^9$	0.52	8.5	19.	30.			
W_A^N	1.	16.4	37.6	57.4			
$(W_A/W_{ch})^N$	1.	4.9	3.0	0.66			

Leonid Afanasyev (JINR)

ICHEP 2016, August 6 33 / 48

イロト イポト イヨト イ

Accuracy of a_0^- measurement with 450 GeV beam

On the base of experimental data, estimation of time needed for measurement a_0^- with statistical accuracy $\delta_{a_0^-}$ for present DIRAC setup and beam condition (Nickel target only); Mod1 is for DIRAC setup at $E_p = 450$ GeV beam (small modification due to another geometry of secondary particle beam); Mod2 is for essentially modified DIRAC setup at 450 GeV beam with higher intensity (I_B). It is assumed that at 450 GeV beam setup would obtain 3000 spills (4.5s) per day.

Setup	Ep	I _b	$\theta_{\textit{lab}}$	Solid angle	Beam time	Run time	δ_{a_0}
	GeV	p/s		sr	S	months	%
Present	24	$2.7 \cdot 10^{11}$	5.7	$1.2 \cdot 10^{-3}$	$1.2 \cdot 10^{6}$	14.5	43.
Present	24	$2.7\cdot10^{11}$	5.7	$1.2 \cdot 10^{-3}$	$6.0\cdot10^7$	715.6	5.
Mod1	450	$1.0\cdot10^{11}$	4.0	$0.6 \cdot 10^{-3}$	$5.8\cdot10^{6}$	14.3	5.
Mod2	450	$1.0\cdot10^{12}$	4.0	$0.6 \cdot 10^{-3}$	$7.4\cdot10^{5}$	1.9	5.

Work under LOI for experiment at 450 Gev proton beam is started.

< ロト < 同ト < ヨト < ヨト

Conclusion

- In the experiment DIRAC at CERN, the dimesonic Coulomb bound states involving strangeness, the $\pi^- K^+$ and $\pi^+ K^-$ atoms have been observed with reliable statistics: 349 ± 62 events (5.6 σ).
- Value of πK atom lifetime preliminary has been expracted to be $\tau = (3.8^{+3.5}_{-2.1}|_{tot})$ fs. It provides a measurement of the S-wave isospin-odd πK scattering length $|a_0^-| = (0.087^{+0.043}_{-0.024}) \cdot M_{\pi}^{-1}$.
- Simulation, based on results of experiment DIRAC, shoes that a S-wave isospin-odd πK scattering length $|a_0^-|$ could be measured with accuracy 5% in a reasonable time, using 450 GeV proton beam.

イロト イポト イヨ

Thank you for your attention!

Supplementary slides

э

イロト イポト イヨト イヨト

Pionium lifetime

Pionium $(A_{2\pi})$ is a hydrogen-like atom consisting of π^+ and π^- mesons:

 $E_B = -1.86 \text{ keV}, r_B = 387 \text{ fm}, p_B \approx 0.5 \text{ MeV}/c$

The lifetime of $\pi^+\pi^-$ atoms is dominated by the annihilation process into $\pi^0\pi^0$:

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I = 0 and I = 2.

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Published results on $\pi\pi$ scattering lengths

DIRAC	$\tau_{1s}(10^{-15}s)$	a ₀ – a ₂	Reference	
data	value stat syst theo* tot	value stat syst theo * tot		
2001	$2.91^{+0.45+0.19}_{-0.38-0.49} \begin{bmatrix} +0.49\\ -0.62 \end{bmatrix}$	$0.264^{+0.017+0.022}_{-0.020-0.009} \begin{bmatrix} +0.033\\ -0.020 \end{bmatrix}$	PL B 619 (2005) 50	
2001-03	$3.15^{+0.20+0.20}_{-0.19-0.18} \begin{bmatrix} +0.28 \\ -0.26 \end{bmatrix}$	$0.2533^{+0.0078+0.0072}_{-0.0080-0.0077} \begin{bmatrix} +0.0106\\ -0.0111 \end{bmatrix}$	PL B 704 (2011) 24	

* theoretical uncertainty included in systematic error

イロト イポト イヨト イ

NA48	K-decay	$a_0 - a_2$	Reference
		value stat syst theo tot	
2009	$K_{3\pi}$	$0.2571 \pm 0.0048 \pm 0.0029 \pm 0.0088$	EPJ C64 (2009) 589
2010	$K_{e4}\&K_{3\pi}$	$0.2639 \pm 0.0020 \pm 0.0015$	EPJ C70 (2010) 635

H 5 ICHEP 2016, August 6 39 / 48

э

$\pi^+\pi^-$ atoms - runs 2001-2003

Method of long-lived $\pi^+\pi^-$ atom observation and investigation

э

イロト イポト イヨト イ

Decay length (cm) of $A_{2\pi}$ with different principal quantum number *n* and orbital momentum *l* for $\gamma = 16$.

1	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
0	$1.39 \cdot 10^{-3}$	$1.11 \cdot 10^{-2}$	$3.76 \cdot 10^{-2}$	$8.91 \cdot 10^{-2}$	$1.74 \cdot 10^{-1}$
1		5.6	19	43	84

Fraction of atoms with non-zero orbital momentum ($\epsilon_n(Be)$) on the exit of Be target (100 μ m) and $\epsilon_n(Pt)$ in the entry of Pt foil (10 cm downstream) for $\gamma = 16$.

	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
$\epsilon_n(Be) imes 10^2$	$2.48 \pm O(10^{-3})$	1.54 ± 0.01	$\textbf{0.86} \pm \textbf{0.03}$	0.56 ± 0.06
$\epsilon_n(Pt) imes 10^2$	$0.52 \pm O(10^{-4})$	$1.01\pm O(10^{-3})$	0.78 ± 0.03	0.54 ± 0.06

 $\epsilon_{n\geq 2}(Be) = (7.11 \pm 0.77) \cdot 10^{-2}, \ \epsilon_{n\geq 2}(Pt) = (4.59 \pm 0.76) \cdot 10^{-2}.$

Observation of long-lived $\pi^+\pi^-$ atoms

э

イロト イポト イヨト イ

Influence of permanent magnet on Q_Y distribution

Distribution of $e^+e^$ pairs generated in the Be target (before permanent magnet), Pt foil (after main $a_{0,MeV/c}^{15}$ part of permanent magnet field) and in upstream detector region (after permanent magnet field).

$$Q_T^\prime = \sqrt{Q_X^2 + (Q_Y - 2.3\,{
m MeV}/c)^2}$$

πK atoms ICH

ICHEP 2016, August 6 44 / 48

Long-lived $\pi^+\pi^-$ atoms - run 2012

Run 2012, statistics with low and medium background. Two-dimensional distribution over $|Q_L|, Q'_T$ have been fitted with $\chi^2/ndf = 138/140$. Projections to $|Q_L|$ and Q'_T are presented.

Leonid Afanasyev (JINR)

ICHEP 2016, August 6 45 / 48

Statistics of "atomic pairs" from long-lived atoms

Q'_T cut	n _A ^L	$n_A^{L, tot}$	Back-	χ^2/n
(MeV/ <i>c</i>)			ground	
	Fit over	$ Q_L , Q_T$		
2.0	436 ± 57	488 ± 64	16790	138/140
	Fit ov	er <i>Q</i>		
0.5	152 ± 29	467 ± 88	971	29/27
1.0	349 ± 53	489 ± 75	3692	19/27
1.5	386 ± 78	$\textbf{454} \pm \textbf{91}$	9302	22/27
2.0	442 ± 105	495 ± 117	16774	22/27
Analysis with "Coulomb pairs" generated at Platinum target				
2.0	$(-0.8 \pm 13.) \times 10^3$			238/140

э

・ロト ・回ト ・ヨト

Observation of long-lived atom

Systematic errors of number of long-lived "atomic pairs"

Sources of systematic errors	σ^{syst}
Uncertainty in correction on Λ -width	4.4
Uncertainty of Platinum foil thickness	22.
Total	23.

 $n_A^L = 436 \pm 57(stat.) \pm 23(syst.) = 436 \pm 61$

Expected number ightarrow 653 \pm 110 (453 \div 845)

B.Adeva et al., Phys. Lett. B 751 (2015) 12

イロト イポト イヨト イ

Experimental conditions

Secondary particles channel	5 7°		
(relative to the proton beam)	5.1		
Angular divergence in vertical	+10		
and horizontal planes	±±		
Solid angle	$1.2 \cdot 10^{-3} sr$		
Dipole magnet	$B_{max} = 1.65 T, BL = 2.3 Tm$		

Time resolution [ps]								
VH IH					SFD			
plane	1	1 2 3 4 X Y					W	
2008	112	713	728	718	798	379	508	518
2010	113	907	987	997	1037	382	517	527

Leonid Afanasyev (JINR)

ICHEP 2016, August 6 48 / 48

3

イロト イポト イヨト イヨト