First observation of π-K+ and π+K- atoms, their lifetime measurement and πK scattering lengths evaluation. (12’ + 3’)

The Low Energy QCD allows to calculate the π-π and π-K scattering lengths with high precision. There are accurate relations between these scattering lengths and π-π, π-K+, π+K- atoms lifetimes. The experiment on the first observation of π-K+ and π+K- atoms is described and results are presented. The atoms were generated on Ni and Pt targets hit by the PS CERN proton beam with momentum $P=24$ GeV/c. Moving in the target, part of atoms break up producing characteristic π-K pairs (atomic pairs) with small relative momentum Q in their c.m.s. In the experiment, we detected $n_{a}=345\pm61$ (5.7 standard deviations) π-K+ and π+K- atomic pairs. The main part of π-K pairs are produced in free state. The majority of particles in these pairs are generated directly or from short-lived sources as rho, omega and similar resonances. The electromagnetic interactions in the final state create Coulomb pairs with a known dependence on Q of the number of pairs. This effect allows to evaluate the number of these Coulomb pairs. There is a precise ratio (~1%) between the number of π-K+ (π+K-) Coulomb pairs with small Q and the number of produced π-K+ (π+K-) atoms. Using this ratio, we obtained the numbers of generated π-K+ and π+K- atoms $N_{a}=1200\pm80$ in total. The breakup probability $P_{br}=n_{a}/N_{a}$ depends on the atom lifetime. Using for Ni and Pt targets this dependence, known with a precision about 1%, the πK atom lifetime was measured and from its value the πK scattering lengths were evaluated. The presented analysis shows that the π-K+ and π+K- atoms production in the p-nucleus interactions increases by 16 and 38 times respectively if the proton momentum P is increased from 24 GeV/c up to 450 GeV/c.

Primary authors: AFANASYEV, Leonid (Joint Inst. for Nuclear Research (RU)); Prof. NEMENOV, Leonid (JINR)

Presenter: AFANASYEV, Leonid (Joint Inst. for Nuclear Research (RU))

Session Classification: Strong Interactions and Hadron Physics

Track Classification: Strong Interactions and Hadron Physics