

An Ar-gas ionization chamber for alpha particle detection at the Yangyang underground laboratory.

Chang Hyon Ha

Center for Underground Physics, IBS, Korea

Motivation for a high sensitivity alpha counter

- Raw material assay via alpha counting, especially for Nal-Powder, CaMoO-Powder used in the dark matter (COSINE) and neutrinoless double beta decay (AMoRE) experiments.
 - Levels of radioactivities (U/Th/Pb) in your detector (grown crystal) often directly translate to the levels in the raw material (powder).
 - Detector components (Lead, Copper, and so on) need to be screened.
- Combined with other techniques such as ICP-MS (U/Th) and HPGe (K) measurements, a complete assay program can be established.
 - The alpha counter is crucial to understand the radio-purity for the Po-210 alpha decay (Pb-210).

Trouble with Pb-210 ...

At lowest energies, Pb-210 bkg. is a main source. Where the contamination is (bulk or surface) is also important.

Ultra low background Materials

Underground Cu forming

Rn-reduced clean room

Chemical Cleaning

Mechanical Surfacing

- Selecting/Fabricating Low-bkg. materials
- Chemical/Mechanical cleaning of the materials
- Measurement of the materials
 - (HPGe, Rn monitor, alpha counter, ICP-MS ...)

Ionization Chamber Overview

Shockley-Ramo Theorem

-Induced current is proportional to speed of drift electrons

Secondary Veto Channel = How big is the blue line (Guard readout)?

Wall, Ceiling, and Sample events using Guard readout

9

Event Classification

Event Classification

Events are pre-selected by hardware veto. Of those, events with risetime above 60µs are classified as alpha events

Calibration with Am-241 source (5.5 MeV alpha) (+ 10µm Mylar layer)

Dielectric material can be measured too. Energy Resolution degrades close to the edge of the detection area.

Low Activity Lead Measurement

Lead Bar Dimension: 10cm x 5cm x 0.5cm

We can separate bulk component from the surface component with simulation and fit

Emissivity Comparison

The Alpha counter is sensitive enough to measure ultralow background (bulk sensitivity of ²¹⁰Pb~1mBq/kg)

Ultra Low Activity Sample Comparison

Several ultra low activity samples have been measured.

Low Activity Background (e.g. PNNL Cu)

Rn-220 is coming through the gas tubing. Need to figure out where they are from.

Low activity Backgrounds (e.g. specular reflector)

At the detector limit, midair background shows up. They are suspected to be from outside, e.g. Ar-gas, or gas plumbing materials. A cold trap to filter this Radon contamination is under development

Rn-exposed Copper Measurement

Radon contamination date can be pinpointed with data

Fit with Rn-exposed Cu for the Po-210 diffusion depth

The best fit thickness of the bulk component shows the Po-210 diffusion depth is shallow for this particular sample.

TII powder measurement

Chang Hyon Ha, Center for Underground Physics, IBS

Total Po-210 activity is estimated to be

Summary

- Ionization chamber alpha counter at Yangyang is running smoothly.
- We have several measurements that reached to ~10⁻⁴ counts/hr/cm²
- Interesting measurements e.g. Rn-exposed sample, and measurements with thin Mylar cover.
- We plan to improve the counter using better plumbing or a charcoal-based cold trap to lower the residual background.
 - Rn-free air is supplied in the detector room now.
- We have started powder measurements for assaying the raw material of the crystals.

Backup

Detector Threshold & Efficiency

Preset trigger threshold: 1.5 MeV. Above 2.4 MeV 100% efficient The threshold has been lowered by about 1 MeV

Sample Preparation/Cleaning Studies

Alcohol submerge/dry

Sand paper scraped

Alcohol cleaning did not improve the quality.

We suspect drying process was

not controlled properly.

We suspect the sand paper left residue after cleaning.

Samples need to be prepared in a controlled environment, e.g. N2-supplied glove box.

Tray Background Measurements

Tray background measurements between 5 months seem to be consistent.

Ultra Low Activity Lead Measurement

We can separate bulk component from the surface component with simulation and fit