

Rare Decays and Angular Analyses of $B \rightarrow X \mu^+ \mu^-$ at CMS

Dayong Wang dayong.wang@pku.edu.cn (for CMS Collaboration)

PEKING UNIVERSITY

ICHEP2016@Chicago, Aug 6 2016

CMS is marvelous for HF studies

- Flexible triggers
- Large silicon tracker
- Strong magnetic field
- Broad acceptance
- Superb muon systems
 - Three different devices, coverage up to $|\eta|$ <2.4
 - Dimuon mass resolution ~ 0.6 -1.5% (depending on |y|).
 - Fake rate $\leq 0.1\%$ for pi,K; $\leq 0.05\%$ for proton.
 - MVA-based ID for $B \rightarrow \mu^{+}\mu^{-}$ analysis.

FCNC processes b→(X)µ⁺µ⁻: golden indirect probes of NP

clean exp signature; robust theory calc; high sensitivity

Effective theory: model independent descriptions

$$\mathcal{H}_{\mathrm{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\mathrm{tb}} V_{\mathrm{tq}}^* \sum_{i} \underbrace{\mathcal{C}_i \mathcal{O}_i}_{} + \underbrace{\mathcal{C}_i' \mathcal{O}_i'}_{} + \sum \frac{c}{\Lambda_{\mathrm{NP}}^2} \mathcal{O}_{\mathrm{NP}} \qquad \begin{array}{ll} i = 1, 2 & \mathrm{Tree} \\ i = 3 - 6, 8 & \mathrm{Gluon \ penguin} \\ i = 7 & \mathrm{Photon \ penguin} \\ \underline{m_s} & \mathrm{Suppressed} & i = 9, 10 & \mathrm{EW \ penguin} \\ i = S, P & \mathrm{(Pseudo)scalar \ penguin} \end{array}$$

Differenct processes have sensitivities to different operators

Operator \mathcal{O}_i	$B_{s,d} o X_{s,d} \mu^+ \mu^-$	$B_{s,d} o \mu^+ \mu^-$	$B_{s,d} o X_{s,d} \gamma$
$\mathcal{O}_7 \sim m_b (ar{s_L} \sigma^{\mu u} b_R) F_{\mu u}$	✓		✓
$\mathcal{O}_9 \sim (ar{s_L} \gamma^\mu b_L) (ar{\ell} \gamma_\mu \ell)$	✓		
$\mathcal{O}_{10} \sim (ar{s_L} \gamma^\mu b_L) (ar{\ell} \gamma_5 \gamma_\mu \ell)$	✓	✓	
$\mathcal{O}_{S,P} \sim (ar{s}b)_{S,P} (ar{\ell}\ell)_{S,P}$	(√)	✓	

2016/8/6 ICHEP2016 Dayong Wang •

Rare decay search: $B^0_{(s)} \rightarrow \mu^+ \mu^-$

$$\begin{array}{c|c}
\overline{b} & W^{+} \\
B_{s,d} & t, c, u \\
\hline
 & \overline{\chi}^{+} \\
\hline
 & v \\
\hline
 & \mu^{-}
\end{array}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$
 Phys. Rev. Lett. 112 (2014) 101801

$$\begin{array}{c|c}
\overline{b} \\
B_{s,d} \\
s,d
\end{array}$$

$$\begin{array}{c|c}
W^+ \\
H^0,h^0
\end{array}$$

SM diagrams and prediction

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 3.0^{+1.0}_{-0.9} \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.5^{+2.1}_{-1.8} \times 10^{-10}$

CMS made it with full Run-I data

CMS: Phys. Rev. Lett. 111 (2013) 101804

Simultaneous publication with LHCb Each with $> 4\sigma$ for $B_s \rightarrow \mu^+ \mu^-$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 2.9 + 1.1 + 0.3 \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.7 + 2.4 + 0.6 \times 10^{-10}$$

LHCb: Phys. Rev. Lett. 111 (2013) 101805

2016/8/6 ICHEP2016 Dayong Wang

CMS&LHCb "deep" combination: First observation of B_s→µ⁺µ⁻

History: 30 years of search

Future projection

- Extrapolations using Phase I/II detector setups and L1 triggers
- Invariant mass resolution from full GEANT4 simulation
- Restrict analysis to barrel region

CMS-FTR-14-015

\mathcal{L} (fb ⁻¹)	$N(\mathbf{B}_s^0)$	$N(B^0)$	$\delta \mathcal{B}(\mathrm{B}_{\mathrm{s}}^{0} \to \mu^{+}\mu^{-})$	$\delta \mathcal{B}(\mathrm{B}^0 \to \mu^+ \mu^-)$	B^0 sign.	$\delta \frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$
20	18.2	2.2	35%	> 100%	$0.0-1.5\sigma$	> 100%
100	159	19	14%	63%	$0.6 - 2.5 \sigma$	66%
300	478	57	12%	41%	$1.5 - 3.5 \sigma$	43%
300 (barrel)	346	42	13%	48%	$1.2 - 3.3 \sigma$	50%
3000 (barrel)	2250	271	11%	18%	$5.6 - 8.0 \sigma$	21%

B → K(*)µ+ µ-anglular analyses

• $B \to K \mu^+ \mu^-$ and $B \to K^* \mu^+ \mu^-$ proceed dominantly through penguin and box diagrams.

- Integrating out the short distance dynamics → Wilson Coefficients:
 - C_7 electromagnetic
 - C_9 semi-leptonic vector
 - \circ \mathcal{C}_{10} semi-leptonic axial vector
- Observables depend on four-momentum transferred to dimuon, q².

Decay Parameters

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \begin{bmatrix} S_1^s \sin^2\theta_K + S_1^c \cos^2\theta_K + \\ S_2^s \sin^2\theta_K \cos 2\theta_\ell + S_2^c \cos^2\theta_K \cos 2\theta_\ell + \\ S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + \\ S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + \\ S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + \\ S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \end{bmatrix},$$

Complete description of the decay rate: 11 variables!

2016/8/6 ICHEP2016 **Dayong Wang**

Simplified decay rates and parameters

$$\frac{1}{\Gamma} \frac{d^3 \Gamma}{d \cos \theta_K d \cos \theta_l dq^2} = \frac{9}{16} \left\{ \frac{2}{3} \left[\mathbf{F}_S + \mathbf{A}_S \cos \theta_K \right] (1 - \cos^2 \theta_l) \right\}$$

 F_S : fraction of S-wave (~few %) A_S : interference amplitude

 $A_{\rm FB}$ and $F_{\rm L}$ do not depend on ϕ , efficiency nearly constant.

$$= + (1 - F_S) \left[2F_L \cos^2 \theta_K (1 - \cos^2 \theta_l) + \frac{1}{2} (1 - F_L) (1 - \cos^2 \theta_K) (1 + \cos^2 \theta_l) + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_l \right]$$

 F_L : Fraction of longitudinal polarization of the K*

 A_{FB} :Forward-backward asymmetry of the dilepton system

dimuon invariant mass

$$A_{FB} \propto -\text{Re}\left[\left(2\frac{C_7^{eff}}{7} + \frac{q^2}{m_b^2}\frac{C_9^{eff}}{C_9}\right)\frac{C_{10}}{C_{10}}\right]$$

Forward event

Backward event

8TeV Signal Event Yields

Phys. Lett. B 753, 424 (2016).

- Reconstruct the events in 7 q^2 bins, excluding $J/\psi \& \psi'$ regions, total ~1426 signal events seen.
- Signal CP-tagged by the best $K\pi$ invariant mass.

CMS 8TeV Results

CMS-BPH-13- 010

Phys. Lett. B 753, 424 (2016).

The CMS results are in good agreement with the SM predictions, indicating no strong contribution from physics beyond the standard model.

Dayong Wang

CMS 7TeV Results

Phys. Lett. B 727 (2013) 77

- CMS precisions are better than CDF, Belle, BaBar but not as good as LHCb (1 fb⁻¹)
- More competitive in high q^2 region
 - •BaBar: Phys. Rev. D 79 (2009) 031102
 - •Belle: Phys. Rev. Lett. 103 (2009) 171801
 - •CDF: Phys. Rev. Lett. 108 (2012) 081807
 - •LHCb(1fb⁻¹): *Phys.Rev. Lett.* **108** (2012) 181806

Combined results 7/8TeV

Phys. Lett. B 753, 424 (2016).

The CMS measurements are consistent with the other results, with comparable or higher precision.

•BaBar: Phys. Rev. D 86 (2012) 032012,

•Belle: Phys. Rev. Lett. 103 (2009) 171801

•CDF: Phys. Rev. Lett. 108 (2012) 081807

Phys. Rev. Lett. 106 (2011) 161801

•LHCb (3 fb⁻¹): JHEP 08 (2013) 131

Summary

- Rare FCNC decays are good probes of physics beyond standard model
- CMS has established B_s → µ⁺ µ⁻ from Run-I data and big potential in Run-II with upgrade scenarios
- Angular analysis of B⁰ → K^{*}µ⁺ µ⁻ provides precise test of SM predictions and no deviation is seen
- More are coming ... Stay tuned!
 - P_5 of $B^0 \rightarrow K^* \mu^+ \mu^-$ based on Run-I data
 - Sister analyses of B⁺ → K(*)μ⁺ μ⁻ with Run-I data
 - More results based on Run-II data

extra slides...

2016/8/6 ICHEP2016 Dayong Wang 15

Analysis Strategy

- Reject candidate events having the di-muon mass compatible with J/ψ or $\psi' \rightarrow$ these events are used for the normalization and cross-check purpose
- \square Fit in bins of q^2 to the $K\pi\mu\mu$ mass and two angular variables (θ_ℓ, θ_K) to
 - \triangleright estimate F_S and A_S in the $B^0 \to K^{*0}J/\psi$ channel
 - \triangleright measure F_L and A_{FB} in the signal sample
- Determine the differential branching fraction, normalized w.r.t. $B^0 \to K^{*0}I/\psi$

$$\frac{\Delta \mathcal{B}(B^{0} \to K^{*0}(K^{+}\pi^{-})\mu^{+}\mu^{-})}{\Delta q_{i}^{2}} = \left(\frac{Y_{Si}^{R}}{\mathcal{E}_{Si}^{R}} + \frac{Y_{Si}^{M}}{\mathcal{E}_{Si}^{M}}\right) \left(\frac{Y_{N}^{R}}{\mathcal{E}_{N}^{R}} + \frac{Y_{N}^{M}}{\mathcal{E}_{N}^{M}}\right)^{-1} \frac{\mathcal{B}(B^{0} \to K^{*0}(K^{+}\pi^{-})J/\psi(\mu^{+}\mu^{-}))}{\Delta q_{i}^{2}}$$

PDF
$$(m, \theta_{K}, \theta_{l}) = Y_{S}^{C} \left[S^{C}(m) S^{a}(\theta_{K}, \theta_{l}) \epsilon^{C}(\theta_{K}, \theta_{l}) + \frac{f^{M}}{1 - f^{M}} S^{M}(m) S^{a}(-\theta_{K}, -\theta_{l}) \epsilon^{M}(\theta_{K}, \theta_{l}) \right]$$

Unbinned likelihood fit performed in each q2 bin

Fit m(K $\pi \mu \mu$), $\cos \theta_{K}$, $\cos \theta_{l}$

Background shapes from fit to m(B0) sidebands

 $+ Y_{B} B^{m}(m) B^{\theta_{K}}(\theta_{K}) B^{\theta_{l}}(\theta_{l})$,

Signal m(B0) shapes and fraction of mistagged events from MC

2016/8/6 16 ICHEP2016 Dayong Wang

Systematic uncertainties(8TeV)

Systematic uncertainty	$F_{\rm L}(10^{-3})$	$A_{\rm FB}(10^{-3})$	$\mathrm{d}\mathcal{B}/\mathrm{d}q^2$ (%)
Simulation mismodeling	1–17	0-37	1.0-5.5
Fit bias	0-34	2-42	_
MC statistical uncertainty	3–10	5–18	0.5-2.0
Efficiency	34	5	_
K π mistagging	1–4	0–7	0.1 - 4.1
Background distribution	20-36	12–31	0.0-1.2
Mass distribution	3	1	3.2
Feed-through background	0-27	0-5	0.0 - 4.0
Angular resolution	6–24	0-5	0.2 - 2.1
Normalization to $B^0 \to J/\psi K^{*0}$	_	_	4.6
Total systematic uncertainty	41–65	18-74	6.4-8.6

Phys. Lett. B 753, 424 (2016).

2016/8/6 ICHEP2016 Dayong Wang 17