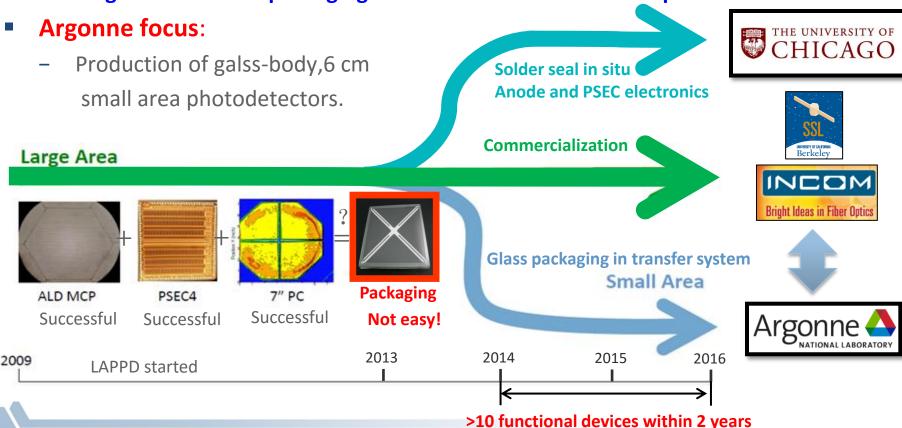
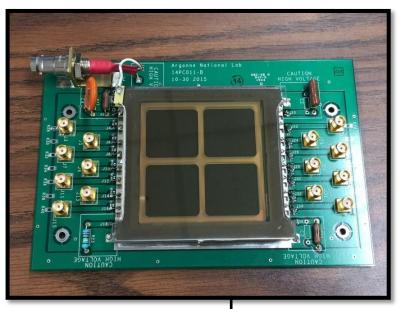

Production and Testing of a Low-Cost Precision Timing MCP Photodetector

Jingbo Wang
Detector R&D, HEP Division
Argonne National Laboratory
wjingbo@anl.gov

Outline


- LAPPD project
- Argonne MCP photodetector program
 - Production system
 - Tube processing
- Testing and characterization
 - Key performances
 - Optimization
- Summary


Large Area Picosecond PhotoDetector (LAPPD)

LAPPD:

- Reinvents photodetectors using transformational technologies
- **Goal:** large-area (20 cm), fast-timing, low-cost
- Success with MCPs, waveform sampling ASIC, large-area photocathodes
- Large-are hermetic packaging was much harder than anticipated

Argonne MCP photodetector program

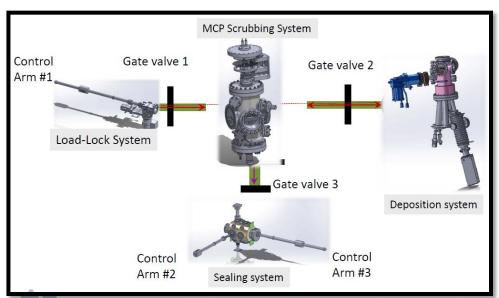
- New techniques to reduce cost
 - New glass substrates provided by INCOM. Inc.
 - ALD functionalization developed by ANL-ES (filed to INCOM.)
 - All-glass hermetic packaging (invented by ANL-HEP, patented) leads to significantly lower cost

6 cm × 6 cm, all-glass body

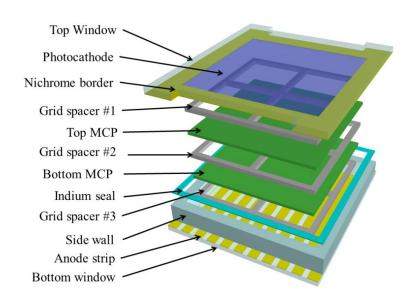
ALD-MCP

Photocathode

Packaging

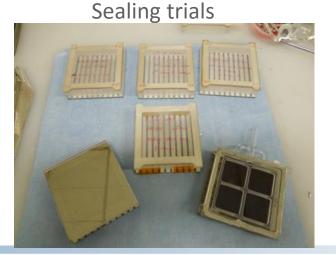


Testing


Small Single Tube Processing System (SmSTPS)

- The goal is to bring everything together and make a sealed device
- Unique features:
 - Vacuum transfer system : external magnetic arm
 - Each process is done in its own chamber: very flexible for R&D
 - Thermo-compression seal using hydraulic driven platens: demonstrated for large-area (8" tiles);
 - **Effusion cells** for bialkali photocathode deposition: efficient method for mass production
- Very flexible for R&D needs to address new requirements

Tube processing


- Tube processing is very challenging
 - Baking & scrubbing
 - Getter activation
 - Photocathode deposition
 - Thermo-compression indium seal
- Current status: 10⁻¹⁰ Torr, one tube / 2 weeks

MCP & Resistive Grid Spacer Stack **Getter strips** Tile base Sealed tube Completed tube

Indium gasket

Status of the tube production

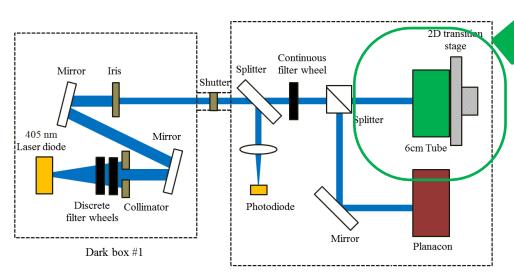
- The 1st production run began in 07/2014 and concluded in 12/2014
 - Addressed many issues (baking and scrubbing, sealing, outgassing control...)
 - Produced 6 working devices, 3 long-lived (>1 year).
 - Discovered limitations of the first design: no HV access to the internal components
- The 2nd production run began in 06/2015 and concluded in 12/2015
 - Improved tube design: allows HV optimization for each component
 - Produced 10 detectors with a 100% sealing yield.
- The 3rd production run has just started: 2 more working detectors
- Now on track of providing photodetectors to the community.

Blue laser test facility

Hamamatsu PLP-10 pulsed blue laser

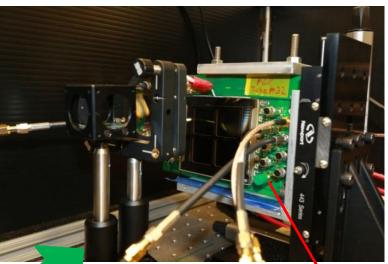
■ Wavelength: **405 nm**

• Pulse duration: FWHM = 70 ps (σ = 30ps)

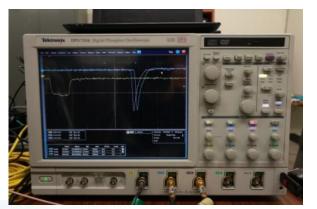

■ Frequency: 2 Hz – 10 MHz

■ Beam size: ~1 mm

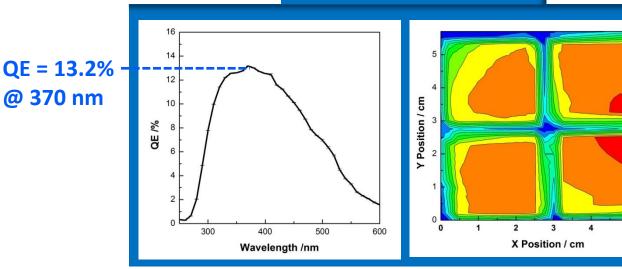
Start signal: laser synchronization pulse


Translation stage: um precision

Readout: Programmable Oscilloscope


Dark box #2

Dark box #2


40 Gs/s scope

Key performances

QE = 13 %

16.0%

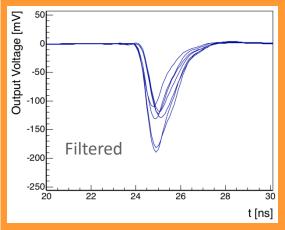
14.4%

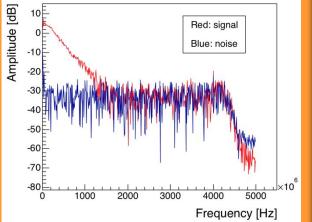
12.8%

11.2%

9.6%

8.0% 6.4%

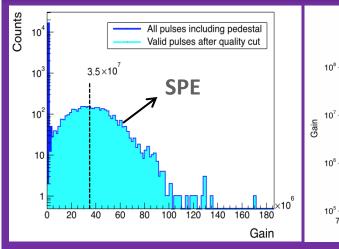

4.8% 3.2%

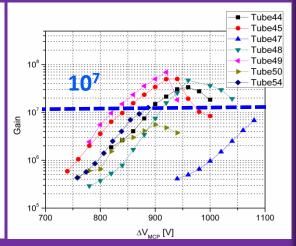

1.6%

15.5% maximum

Signals / frequency components

0.5 ns rise time

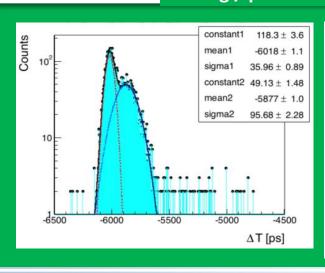


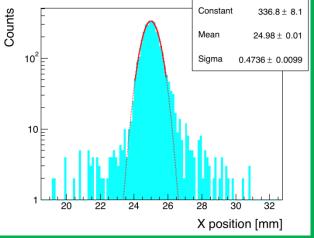

Signal bandwidth up to 1.3 GHz

Key performances

Gain distribution / Gain VS HV

Gain > 10^{7}

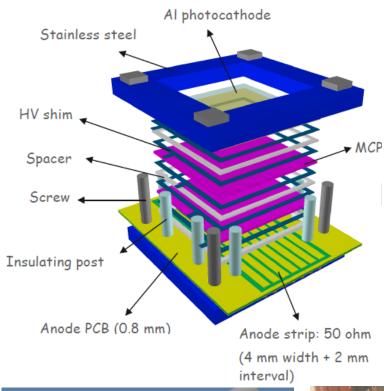



Gain VS HV_{MCP}

Timing / position distributions

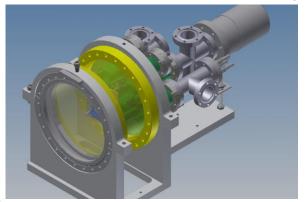
 σ_{IRF} ~ 35 ps for SPE

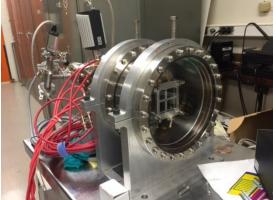
 σ_{TTS} ~ 20 ps

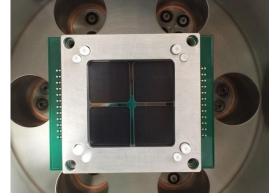

σ < 1 mm for SPE

Comparison to commercial products

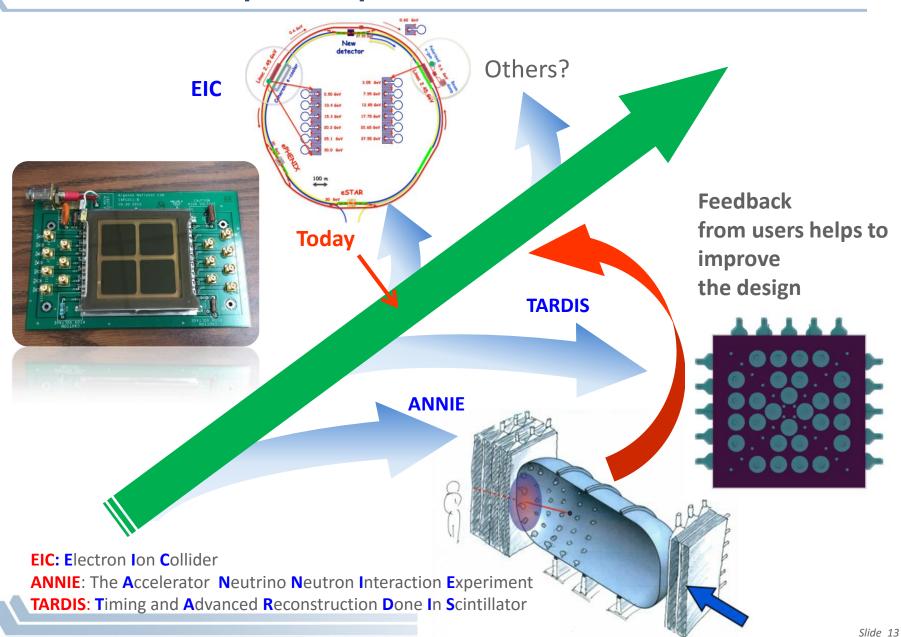
		MCP-PMT	HPK6 R3809U-50-11X	BINP8 N4428	HPK10 R3809U-50-25X	Burle25 85011-501	ANL 6cm tube	
		PMT size(mm)	45	30.5	52	71x71	85×76	
		Effective size(mm)	11	18	25	50x50	60×60	
		Channel diameter(µm)	6	8	10	25	20	
		Length-diameter ratio	40	40	43	40	60	
		Max. H.V. (V)	3600	3200	3600	2500	2900	
		photo-cathode	multi-alkali	multi-alkali	multi-alkali	bi-alkali	Bi-alkali	2 2
		Q.E.(%) (λ=408nm)	26	18	26	24	13	$\int_{I.R.F}^{2} \sim \sigma_{.T_{MCP}}^{2} + \sigma_{.T_{laser}}^{2}$
By Nagoya : University	120 100 80 SLL 40	25 Jum 10 Jum Single photon 106 Gain	μm	80 SG] -40 		20 μm. TTS lev	Tul ↓ Tul ↓ Tul ↓ Tul ↓ Tul ↓ Tul	be44 be45 be49 be50 be51 be52 be53 be54 Argonne 108
		Juin				Gain	_	


Pore size is an important parameter to obtain ultimate time resolution


Detector optimization



Testing chamber


- The internal MCP/spacer stack can be assembled in arbitrary configuration
- Allow to optimize the detector design without building a lot of sealed tubes
- To do: improvement on timing and Bfield performance
- Allow to study other ideas: neutron detection, x-ray detection...

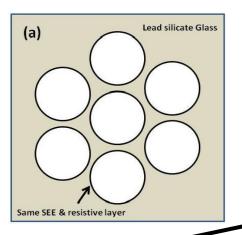
Future development path

Summary

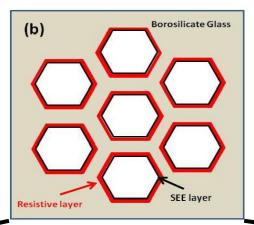
- The Argonne MCP photodetector program has been successful, benefiting from advances in different disciplines.
 - Completed >13 working Photodetectors; achieved 100% sealing yield
 - Gain > 10^7 ;
 - Time resolution $\sigma_{I.R.F}$ ~ 35 ps (TTS ~ 20 ps);
 - Position resolution along the anode strip: < 1 mm
- The Small Tube Processing System is an ideal R&D platform for addressing new requirements and studying new ideas (VUV photocathode, cryogenic application, thermal neutron detection...).
- On track of providing photodetectors to the community.

Acknowledgments

- A.Mane, K. Byrum, M. Demarteau, R. Dharmapalan, J. Gregar, E. May, R. Wagner, D. Walters, J. Elam, J. Xie, L. Xia, H. Zhao, Argonne National Laboratory, Lemont, IL, US
- M. Chiu, Brookhaven National Laboratory, Upton, NY, US
- H. Frisch, A. Elagin, University of Chicago, Chicago, IL, US
- M. Minot, Incom Inc., Charlton, MA, US
- M. Malek, The University of Sheffield, Sheffield, UK
- A. Ronzhin, Fermilab, Batavia, IL, US
- M. Sanchez, M. Wetstein, Iowa State University, Ames, IA, US
- R. Svoboda, UC Davis, Davis, CA, US
- C. Zorn, Jefferson Lab, Newport News, VA, US


Thanks for listening!

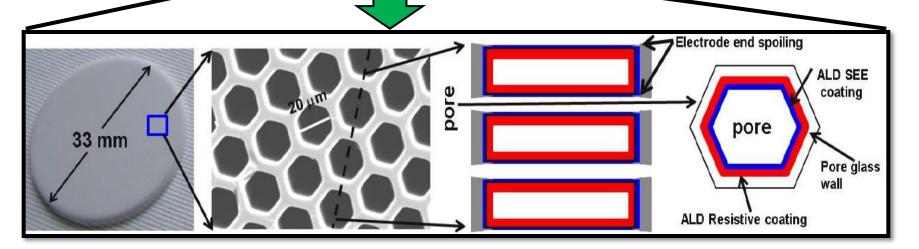
Backup



Micro-channel plate by Atomic Layer Deposition

Conventional route

ALD route



Conventional MCP:

- Pb-glass provides pores
- Pb-glass provides resistive layer
- Pb-Oxide emissive layer

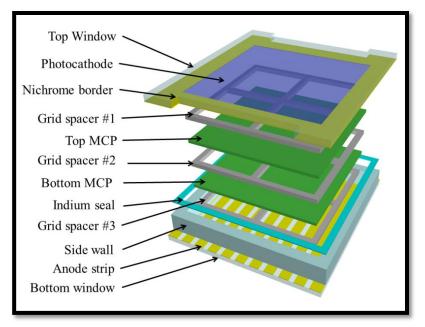
ALD-MCP:

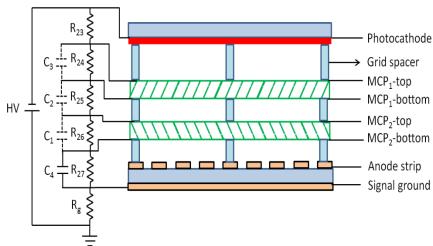
- New glass substrate from Incom.
- Resistive/emissive layers by ALD
- Price reduced. Flexible for R&D (highrate, cryogenic applications)

ALD = Atomic Layer Deposition

Performance of ALD-MCP

- 20 μm pore, 60:1 L/d ALD MCP pair.
- Uniformity was measured for a 20cm x 20cm MCP pair with MgO Secondary Emission Layer.
- Average gain ~ 7 × 10⁶
- Map shows <10% MCP gain variation

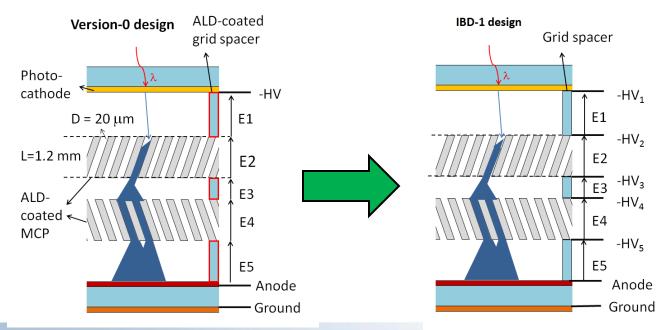

Average gain image "map"

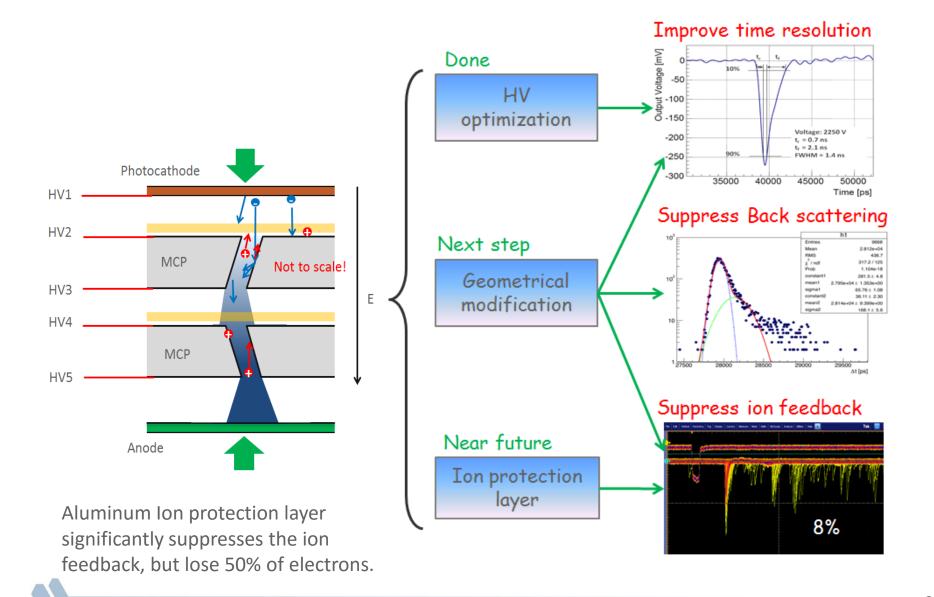

- Transformative Technology
- Worlds largest MCPs
- Competitive gain
- Competitive life times
- Lower background, dark current
- Mechanically robust

 $20 \text{ cm} \times 20 \text{ cm}$

ANL 6 cm × 6 cm photodetector

- A glass bottom plate with stripline anode readout
- A glass side wall that is glass-frit bonded to the bottom plate
- A pair of MCPs (20μm pore) separated by a grid spacer.
- Three glass grid spacers.
- A glass top window with a bialkali (K, Cs) photocathode.
- An indium gasket between the top window and the sidewall.





Design improvement

- Internal resistor biased design (originnal LAPPD design): grid spacers are resistively coated
 - No direct way to measure QE in sealed tube
 - Need fine matching between component resistances
 - Can't optimize each internal component
- Independently biased design (IBD-1): grid spacers are insulators
 - Performances significantly improved after HV optimization: 65 ps -> 35 ps
 - This new biasing design has filed a patent

Detector optimization

