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Large Area Picosecond PhotoDetector (LAPPD) 
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 LAPPD:  

− Reinvents photodetectors using transformational technologies  

− Goal:   large-area (20 cm), fast-timing, low-cost 

− Success with MCPs, waveform sampling ASIC,  large-area photocathodes 

− Large-are hermetic packaging  was much harder than anticipated 

 Argonne focus:  

− Production of galss-body,6 cm 

small area photodetectors.  

Packaging 

Not easy! 

2015 

>10 functional devices within 2 years  

LAPPD started 

Successful Successful Successful 

+ + = 
？ 

Commercialization 

Glass packaging in transfer system 

2013 2014 2016 

Solder seal in situ 
Anode and PSEC electronics 



Argonne MCP photodetector program 

• New techniques to reduce cost 
− New glass substrates provided by 

INCOM. Inc. 
− ALD functionalization developed by 

ANL-ES  (filed to INCOM.) 
− All-glass hermetic packaging (invented 

by ANL-HEP, patented) leads to 
significantly lower cost 

ALD-MCP Photocathode  Packaging Testing 

6 cm × 6 cm, all-glass body 
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Small Single Tube Processing System (SmSTPS) 
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 The goal is to bring everything together and  make a sealed device 

 Unique features:  

− Vacuum transfer system : external magnetic arm 

− Each process is done in its own chamber: very flexible for R&D 

− Thermo-compression seal using hydraulic driven platens :  demonstrated for large-area 
(8” tiles);  

− Effusion cells for bialkali photocathode deposition: efficient method for mass production 

 Very flexible for R&D needs to address new requirements 



Tube processing 

 Tube processing is very challenging 
− Baking & scrubbing 

− Getter activation 

− Photocathode deposition 

− Thermo-compression indium seal 

 Current status: 10-10 Torr, one tube / 2 weeks 

 

Tile base 

MCP & Resistive Grid Spacer Stack 

Sealed tube 

Completed tube 

Getter strips 

Indium gasket 
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Status of the tube production 

 The 1st production run began in 07/2014 and concluded in 12/2014 

− Addressed many issues (baking and scrubbing, sealing, outgassing control…) 

− Produced 6 working  devices, 3 long-lived (>1 year). 

− Discovered limitations of the first design: no HV access to the internal components 

 The 2nd production run began in 06/2015 and concluded in 12/2015 

− Improved tube design: allows HV optimization for each component 

− Produced 10 detectors with a 100% sealing yield. 

 The 3rd production run has just started: 2 more working detectors 

 Now on track of providing photodetectors to the community.  
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Sealing trials Working detectors 



Blue laser test facility 
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 Hamamatsu PLP-10 pulsed blue laser  

 Wavelength:  405 nm 

 Pulse duration: FWHM = 70 ps (𝛔 = 30ps) 

 Frequency:  2 Hz – 10 MHz 

 Beam size:  ~1 mm 

 Start signal:  laser synchronization pulse  

 Translation stage: um precision  

 Readout:   Programmable Oscilloscope 

 Data analysis:  Waveform sampling, offline  

Dark box #2 

Readout 
board 40 Gs/s scope  



Key performances 
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QE Spectra response/ 2D map 

QE = 13.2%  
@ 370 nm QE = 13 % 

15.5% 
maximum 

Signals / frequency components  

0.5 ns  
rise time 

Signal bandwidth 
 up to1.3 GHz 

Filtered 



Key performances 
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σIRF ~ 35 ps  
for SPE 

Timing / position distributions 

σ < 1 mm 
for SPE 

σTTS ~ 20 ps  

Gain distribution / Gain VS HV 

Gain > 107 Gain VS HVMCP 

SPE 107 



Comparison to commercial products 
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By Nagoya 
University By Argonne 

 Pore size is an important parameter to obtain ultimate time resolution 

TTS level 

20 μm 

107 107 108 

10 μm 

25 μm 

8 μm 

6 μm 

. . . .

2 2 2~
I R F T TMCP laser

  



Detector optimization 
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 Testing chamber 

– The internal MCP/spacer stack can be 
assembled in arbitrary configuration 

– Allow to optimize the detector design 
without building a lot of sealed tubes 

– To do: improvement on timing and B-
field performance  

– Allow to study other ideas: neutron 
detection, x-ray detection… 



Future development path 

Slide  13 

EIC: Electron Ion Collider  
ANNIE: The Accelerator  Neutrino Neutron Interaction Experiment 
TARDIS: Timing and Advanced Reconstruction Done In Scintillator 

Today 

Feedback 
from users helps to 
improve 
the design 

TARDIS 

Others? 

ANNIE 

EIC  



Summary 

 The Argonne MCP photodetector program has been successful, benefiting 
from advances in different disciplines.  

 

− Completed >13 working Photodetectors; achieved 100% sealing yield 

− Gain > 107;  

− Time resolution σI.R.F ~ 35 ps (TTS ~ 20 ps);  

− Position resolution  along the anode strip:  < 1 mm 

 

 The Small Tube Processing System is an ideal R&D platform for addressing 
new requirements and studying new ideas (VUV photocathode, cryogenic 
application, thermal neutron detection…). 

 

 On track of providing photodetectors to the community. 
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Backup 
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Micro-channel plate by Atomic Layer Deposition 
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 Conventional MCP:  
– Pb-glass provides pores 

– Pb-glass provides resistive layer 

– Pb-Oxide emissive layer  

 ALD-MCP:  
– New glass substrate from Incom.  

– Resistive/emissive layers by ALD 

– Price reduced. Flexible for R&D (high-
rate, cryogenic applications) 

Conventional route ALD route 

ALD = Atomic Layer Deposition 



Performance of ALD-MCP 
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 Transformative Technology 

 Worlds largest MCPs 

 Competitive gain 

 Competitive life times 

 Lower background, dark 
current 

 Mechanically robust 

Average gain image “map” 

20μm pore, 60:1 L/d  ALD 
MCP pair. 

 20 μm pore, 60:1 L/d  ALD MCP pair. 

 Uniformity was measured for a 20cm x 20cm MCP pair with MgO Secondary 
Emission Layer. 

 Average gain ~ 7 × 106 

 Map shows <10% MCP gain variation 
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20 cm × 20 cm 



ANL 6 cm × 6 cm photodetector 
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 A glass bottom plate with stripline anode readout 

 A glass side wall that is glass-frit bonded to the bottom plate 

 A pair of MCPs (20µm pore) separated by a grid spacer. 

 Three glass grid spacers. 

 A glass top window with a bialkali (K, Cs) photocathode.  

 An indium gasket between the top window and the sidewall. 



Design improvement 

 Internal resistor biased design (originnal LAPPD design):  grid 
spacers  are resistively coated 

– No direct way to measure QE in sealed tube  

– Need fine matching between component resistances 

– Can’t optimize each internal component 

 Independently biased design (IBD-1): grid spacers are insulators 
– Performances significantly improved after HV optimization：65 ps -> 35 ps 

– This new biasing design has filed a patent 
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Detector optimization 
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Aluminum Ion protection layer 
significantly suppresses the ion 
feedback, but lose 50% of electrons.  


