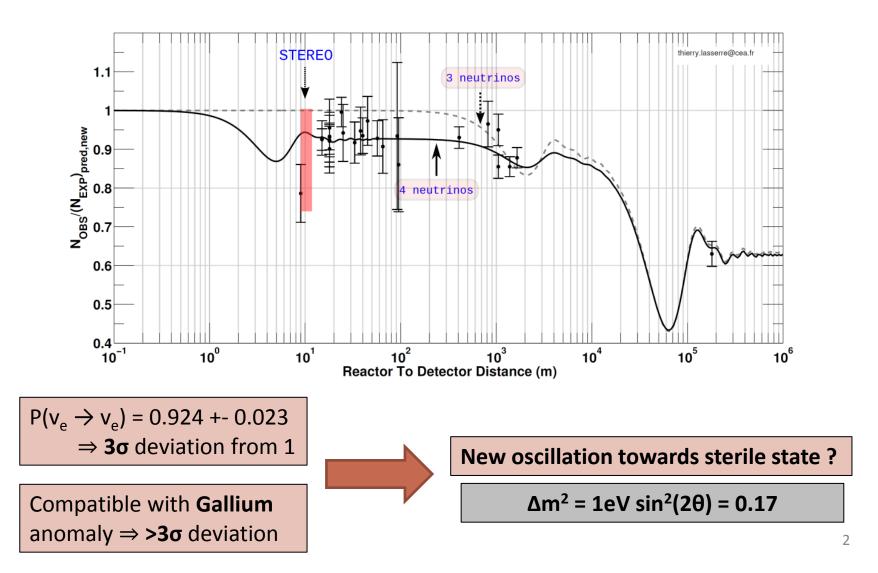
The STEREO experiment

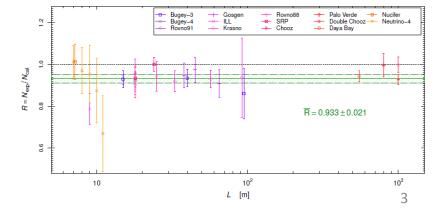
Laboratoire de Physique Subatomique et de Cosmologie Stephane Zsoldos LPSC-Grenoble CNRS/IN2P3


FÜR KERNPHYSIK

جا معة الحسن الثاني – الدار البيضاع UNIVERSITE HASSAN II - CASABLANCA

Reactor Antineutrino Anomaly

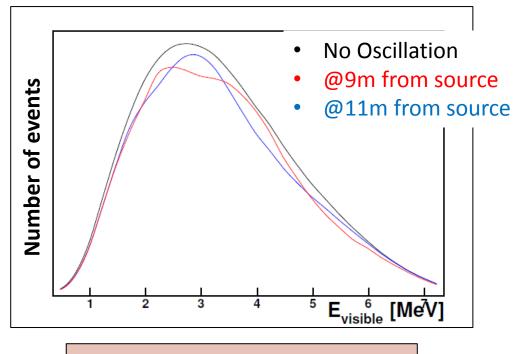
- Reevaluation of reactor v_e spectra (Mueller *et al*, Phys Rev C83 054615)
- Reanalysis of short baseline reactor experiments (Mention et al, Phys Rev D83 073006)



Up-to-date on competition at $\Delta m^2 = 1 eV$

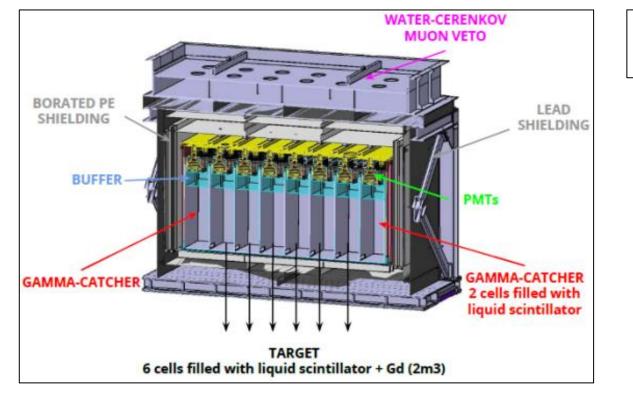
NAME	P _{th} (MW)	L (m)	Depth (m.w.e)	Mtarget (tons)	Tech	Seg	Μον
Nucifer	70	7	13	0.8	Gd	Х	Х
NEOS	2700	25/5	16/23	1	Gd	Х	Х
Neutrino-4	100	6-12	10	1.5	Gd	Х	\checkmark
DANSS	3000	9.7-12.2	50	0,9	Gd	\checkmark	\checkmark
STEREO	57	9-11	18	1.75	Gd	✓	\checkmark
SoLiD	70	5.5-10	10	2.9	⁶ Li	\checkmark	\checkmark
PROSPECT	85	7-18	few	1-10	Gd+ ⁶ Li	\checkmark	\checkmark
NuLat	85	3-8	few	1	⁶ Li+ ¹⁰ B	\checkmark	\checkmark

Recent update : Neutrino-4 Results :


- New measurements at very short distance!
- High systematics...

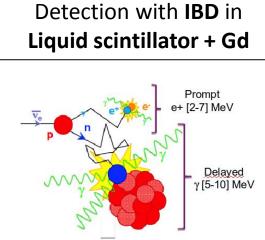
The STEREO experiment : aim

Goal : Observe a new oscillation measuring v_e energy vs distance


- Close to a compact reactor : ILL (Grenoble)
 - \Rightarrow Core : 40 cm diameter, 80 cm high
 - \Rightarrow Highly enriched fuel (²³⁵U) and small evolution of v_e flux
- Relative distorsion of v_e rates vs E_{ve} among cells
 ⇒ Measurements independent from reactor nomalisation
- Absolute rate measurements with small dependance on core evolution

Energy resolution is **crucial !**

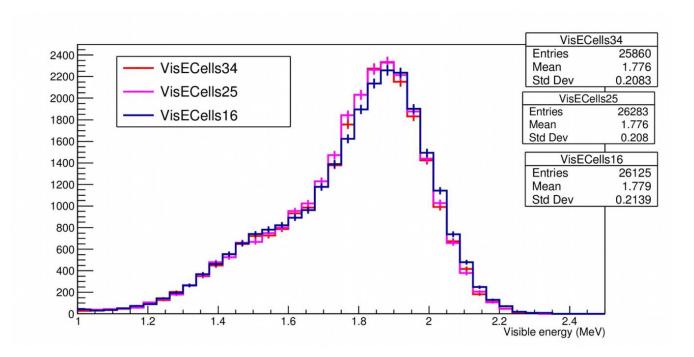
The STEREO experiment : detector


Goal : Observe a new oscillation measuring v_e energy vs distance

BACKGROUND

γ	200 Hz			
n thermal	10 Hz			
N fast	1 Hz			

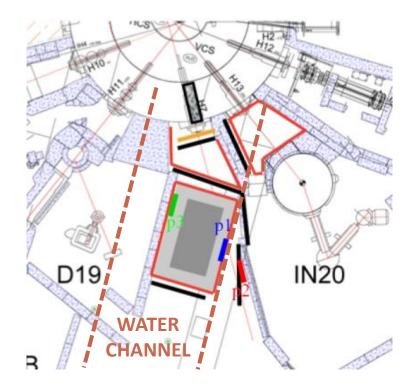
- Accidentals : $\gamma + \gamma$, $\gamma + n$, $n_H + n_{Gd}$
- Correlated : n_{fast} + p -> p + n_{Gd} \Rightarrow **Passive shieldings**


- Segmented detector of 6 identical cells fill with LS+Gd
- Surrounded by an external gamma-catcher fill with LS (no Gd)

Background control is **crucial !**

Simulation of detector response

Goal : Minimise asymmetries among cells


- Simulated E resolution of 12% for positrons at 2 MeV
 ⇒ Small differences between cells
- Neutron efficiency of 60% with a delayed signal above 5 MeV
 ⇒ Only 4% difference on neutron response between cells

STEREO site at the ILL reactor

SPECIFICATIONS

- 57MW and compact core reactor
- [8.9-11.1]m from reactor to STEREO
- Water Channel ⇒ Shield against cosmic muons
- Possibility to move the detector by 1.1m (approx 3 cells width)
 - \Rightarrow Systematics studies

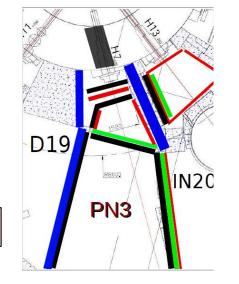
DRAWBACKS

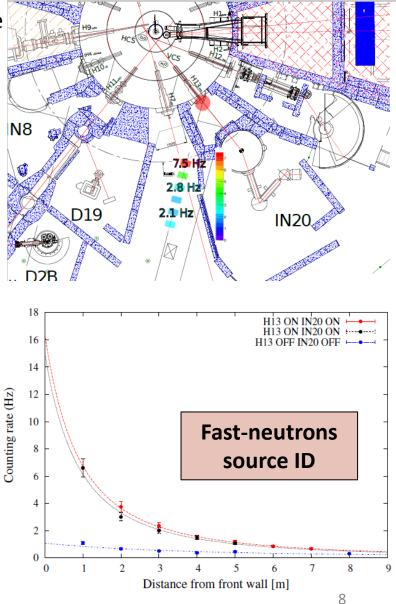
- Background from nearby experiments :
 - \Rightarrow Gammas and neutrons, B-Field
- Nead of large heavy shieldings
 - \Rightarrow Lead, B4C, Polyethylene, Soft Iron and μ Metal

Background analysis on site

Many measurement campaigns for background on site

- Ge and Nal for gammas
- ³He for neutrons


Neutrons and Gammas analysis :


- Identification of hot spots
- Impact on shielding design
- Nearby experiments contribution

B-Field analysis :

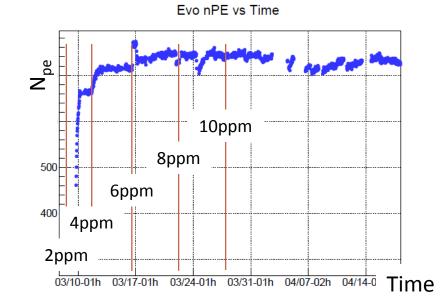
- Design magnetic shielding for detector and muon veto
 - Blue : Concrete
 - Red : Lead
 - Green : PE

INSTALLATION COMPLETED

Internal shielding

- Magnetic shielding (soft iron + μMetal)
- 6 tons of polyethylene
- 65 tons of lead

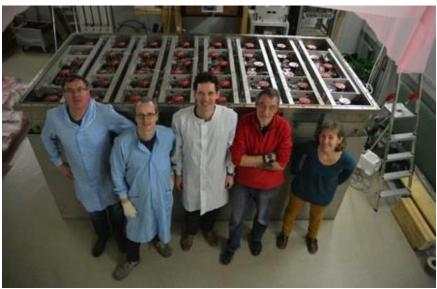
INSTALLATION On-going



Muon veto system

- Volume of water : 2500L
- Pure water + wavelength shifter
- 20 PMTs
- Tyvek sheets for reflectivity
- 12 optical fibers for light calibration

- Several prototypes tested before final instrument
- Simulation studies of the design
 ⇒ Minimizing geometrical effect


INSTALLATION COMPLETED

Inner detector

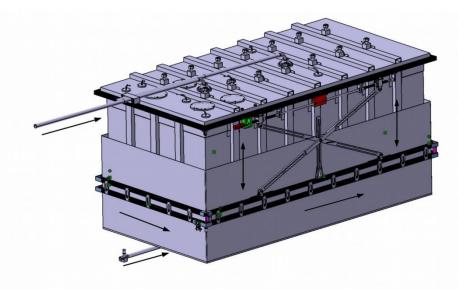
- Double stainless steel vessel
- Acrylic buffer between PMTs and LS
- Sandwich of VM2000 foils in cell walls
- 48 8" PMTs hemispherical

Electronics

- Dedicated electronics hosted on µTCA crate
- Front-end boards
 - 8-channel FADC 14 bits 250 MHz sampling
 - Qtot, Qtail, tCFD and pulse
 - Gain x1 and x20 for single PE
 - First level programmable trigger (FPGA)
- Trigger board ⇒ Second level programmable trigger (FPGA) taking into account the 3 detectors : cells, GC and veto
- LED driver for light calibration

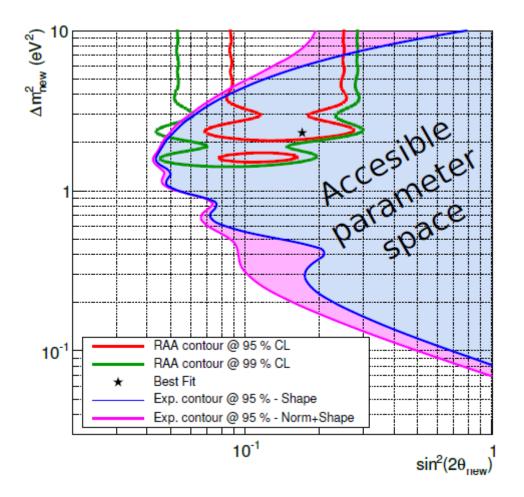
INSTALLATION COMPLETED

μTCA Crate


Trigger board

Front-end board

Calibration System


- 3 subsytems :
 - Automated circulation around detector ⇒ Energy scale
 (each cell independently + GC + vertical dependance with collimation)
 - Automated movement under detector ⇒ n capture efficiency inter-calibration (1 reference point in each cell)
 - 3 manual calibration tubes ⇒ Energy scale + n capture efficiency + vertical dependence (2 central and one bordel cell)

Sensitivity and discovery potential

- 400 v per day during 300 days
- S/B = 1.5
- Realistic detection and reconstruction effects from simulation
- Systematics effect
 - \Rightarrow Flux uncertainties
 - \Rightarrow Neutron lifetime uncertainties
- Cut
 - \Rightarrow Positron > 2 MeV
 - \Rightarrow Neutron > 5 MeV -> Eff 60%
- Escale = 2% (calibration)

- Most items delivered at ILL
- STEREO site **ready** (shielding, floor ...)
- Detector **tested** and **ready** to be inserted
- Detector filling \Rightarrow End 09/2016
- Objective : commissioning in 10/2016
 ⇒ 100 days of data taking before 03/2017
 - \Rightarrow First physics results

Stay Tuned !

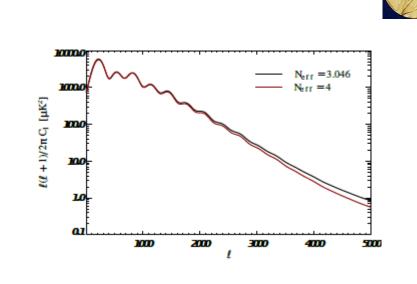
The STEREO collaboration

20 researchers, 3 postdocs, 5 PhD

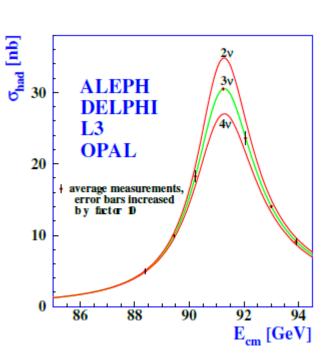
Muon veto, electronics, simulation, DAQ and monitoring, light injection system

Inner detector design, cell prototype, simulation

Security, shieldings, background measurements


Calibration system, simulation, shieldings

Liquid scintillator, PMTs, PMTs mechanics

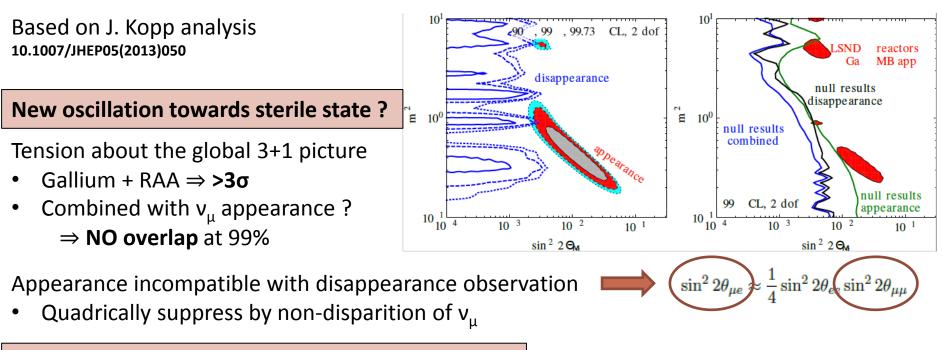

Neutrinos Beyond Standard Model

• 3 neutrinos flavors from Z⁰ decay width measurements and cosmology (LSS)

Neutrinos oscillates \Rightarrow **non-zero mass**

٠

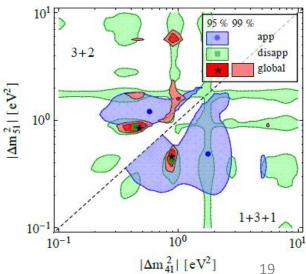
- Several mechanism to provide masses to neutrinos
 - Dirac : $-m(v_L \overline{v}_R + \overline{v}_L v_R)$


• Majorana :
$$-\frac{1}{2}m(\nu_L \overline{\nu}_L^C + \nu_L \overline{\nu}_L^C)$$

• Light sterile neutrinos ? v_R

• Heavy Majorana sterile neutrino ? $\Rightarrow v_L \overline{v}_L^C$

Neutrino oscillation anomalies and sterile fits

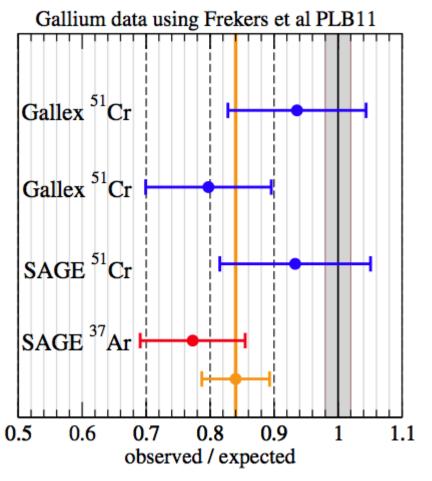


« Release » tension by adding second sterile state

2 options : 3+2 or 1+3+1

- Tension between appearance and disappearance remain severe
- 1+3+1 scenario most favorable

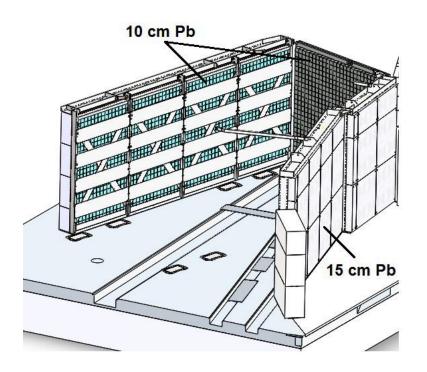
Remove MiniBooNE appearance ? C. Giunti analysis 10.1016/j.nuclphysb.2016.01.013

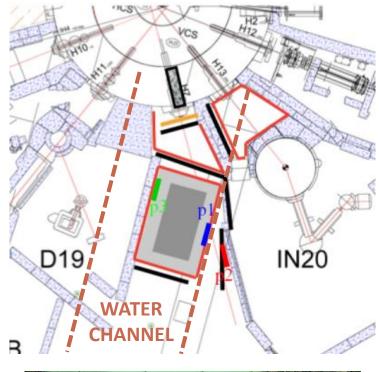

Gallium anomaly

- A β^+ emitter (51Cr or 37Ar) is placed inside a 71Ga solar neutrino detector for calibration
- Neutrinos are detected through 71Ga + ve -> 71Ge + e-

$$\begin{split} \mathsf{P}(\mathsf{v}_{\mathsf{e}} \rightarrow \mathsf{v}_{\mathsf{e}}) &= 0.86 +-0.15 \\ &\Rightarrow \mathbf{2,7\sigma} \text{ deviation from 1} \end{split}$$

New oscillation towards sterile state ?

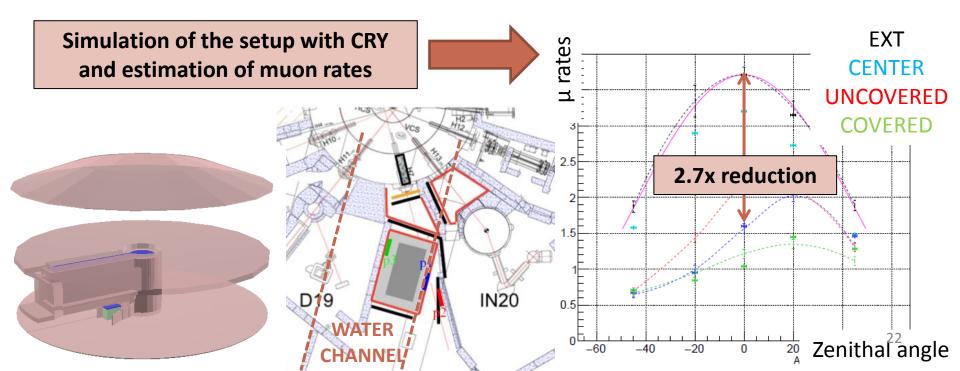

 $\Delta m^2 = 2.24 eV sin^2(2\theta) = 0.50$



External shielding

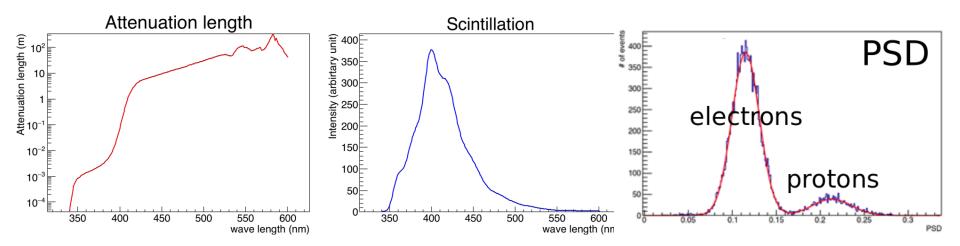
- **D19** : 10cm of lead + B4C
- Front wall : plug in H7 tube + 10cm of polyethylene + 10cm of lead
- IN20 : 10cm of borated polyethylene + 15cm of lead + B4C

INSTALLATION COMPLETED



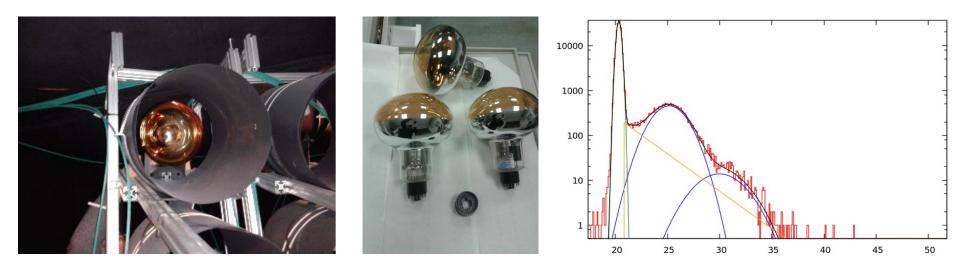
Muon-induced background

- Muons are the most source of background
 - MIP : 2MeV/cm and cell height 90cm ⇒ 180 MeV dE
 ⇒ Saturation of the PMT will affect E reconstruction
- Create fast neutrons by spallation
 ⇒ Irreducible correlated background


Construction of a **transportable detector** to measure **muon rates** vs **zenithal angle**

Scintillation liquid

- Composition of the scintillation liquid definitive
 - LAB : 75% \Rightarrow protons target
 - PXE : $20\% \Rightarrow$ scintillation
 - DIN : 5% \Rightarrow enhance pulse shape discrimination
 - Gd-complex 0.2% + 1% THF \Rightarrow neutron capture
 - PPO + bis-MSB ⇒ wavelength shifters
- STEREO sample stable after 2 years



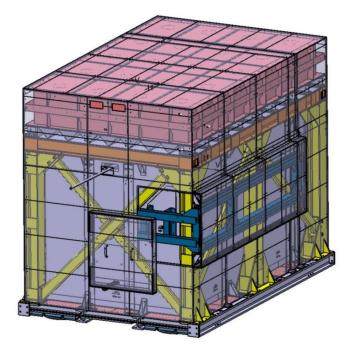
- Light yield ⇒ 6000 photons/Mev
- Attenuation length > 5m in final mixture

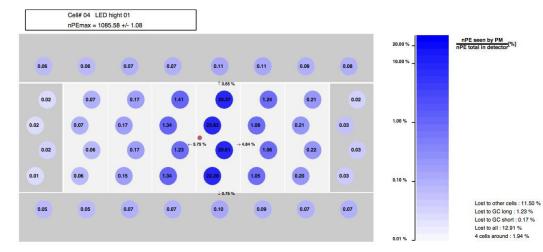
DEVELOPMENT COMPLETED

PMTs

- Detectors photomultipliers : New Hamamatsu RS5912-100
 - Better Gain $\Rightarrow 10^7$
 - Better QE \Rightarrow approx 30% at 420nm
- Tests handled by MPIK Heidelberg in their Faraday lab
- PMTs basis with decoupling system

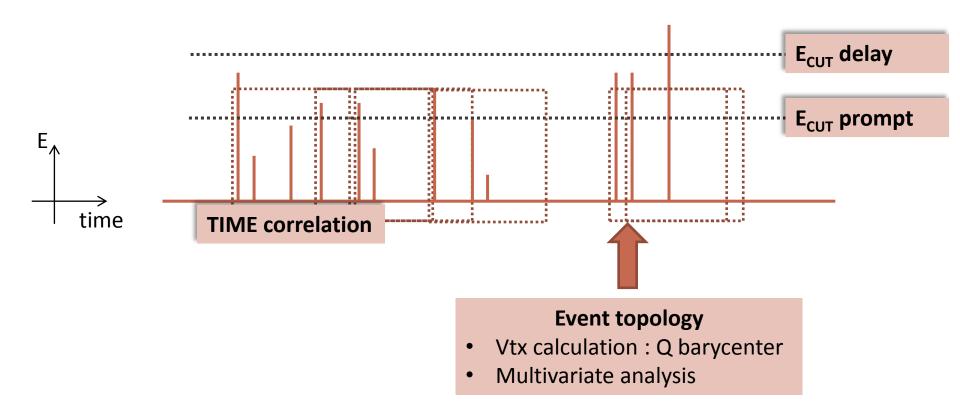
PMTs during tests at MPIK


Photoelectron fits


INSTALLATION COMPLETED

Installation status

- Tested detector and acquisition with LEDs in air
 ⇒ Fine tuning of simulation
- Mounting of support structure ongoing
- Filling STEREO with LS : september 2016



Analysis strategy to identify antineutrino candidates

- Identify muon events : muon veto or dE in detector > 10 MeV
 ⇒ Then remove following event in range < [100-1000]µs
- Identify prompt candidates with E_{cut} = [2-8]MeV
- Identify delay event with E_{cut} = [5-10]MeV and time correlation < 50 μs

