Jets and charged particles in p+Pb and Pb+Pb collisions with the ATLAS Experiment

Martin Spousta on behalf of the ATLAS Collaboration

Charles University in Prague

Introduction

- Jet production and properties are modified in heavy ion collisions
- Study of jets in Pb+Pb collisions should tell us about e.g.:
 - properties of de-confined matter created in heavy ion collisions
 - radiation of energetic color charges in this de-confined medium
- Study of jets in p+Pb collisions should tell us about e.g.:
 - initial state effects
 - correlations between soft and hard processes
- •LHC heavy ion runs & ATLAS:
 - Run 1: Pb+Pb: $\sqrt{s_{NN}} = 2.76$ TeV, $L_{int} = 0.15$ nb⁻¹ pp: $\sqrt{s} = 2.76$ TeV, $L_{int} = 4.2$ pb⁻¹ p+Pb: $\sqrt{s_{NN}} = 5.02$ TeV, $L_{int} = 29$ nb⁻¹
 - Run 2: Pb+Pb: $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, $L_{int} = 0.5 \text{ nb}^{-1}$ $pp: \sqrt{s} = 5.02 \text{ TeV}$, $L_{int} = 28 \text{ nb}^{-1}$

Physics of p+Pb collisions

Inclusive charged particles

arXiv:1605.06436

$$R_{p\text{Pb}}(p_{\text{T}}, y^*) = \frac{1}{\langle T_{\text{Pb}} \rangle} \frac{1/N_{\text{evt}} d^2 N_{p\text{Pb}}/dy^* dp_{\text{T}}}{d^2 \sigma_{pp}/dy^* dp_{\text{T}}}$$

- Clear Cronin peak in central collisions
- Magnitude of R_{pPb} strongly depends on the choice of the Glauber model

Inclusive charged particles

arXiv:1605.06436

$$R_{p\text{Pb}}(p_{\text{T}}, y^*) = \frac{1}{\langle T_{\text{Pb}} \rangle} \frac{1/N_{\text{evt}} d^2 N_{p\text{Pb}}/dy^* dp_{\text{T}}}{d^2 \sigma_{pp}/dy^* dp_{\text{T}}}$$

• Magnitude of R_{pPb} increases with y* towards Pb-going direction (both in peaking region and plateau region)

Inclusive jets

PLB 748 (2015) 392-413

 R_{pPb} for jets: While the R_{pPb} is consistent with unity when evaluated inclusively in centrality (left), it is **not unity when evaluated differentially** in the centrality (right).

Inclusive jets

PLB 748 (2015) 392-413 2013 p+Pb data, 27.8 nb⁻¹ anti- k_t , R=0.4, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0-10% / 60-90% $+3.6 < y^* < +4.4$ $+2.8 < y^* < +3.6$ $+2.1 < y^* < +2.8$ $+1.2 < y^* < +2.1$ +0.8 < y* < +1.2 100 40 1000

 $p_{\scriptscriptstyle T} \times \cosh(\langle y^* \rangle)$ [GeV]

- R_{CP} / R_{pPb} scales with the total momentum of a jet for jets in the positive forward region suggesting a **dependence** on x of parton in proton.
- How much of the centrality dependence (= dependence on ΣE_{T} in the negative forward region) comes from the dependence of ΣE_{T} on x in individual NN collision?

PLB 756 (2016) 10-28

- What is measured: correlation between the dijet kinematics and the magnitude of the UE in the forward region in pp collisions
- Motivation: modeling of particle production, reference measurement to better understand

016) 10.29

PLB 756 (2016) 10-28

- What is measured: correlation between the dijet kinematics and the magnitude of the UE in the forward region in pp collisions
- Motivation: modeling of particle production, reference measurement to better understand the centrality in p+Pb

Anti-correlation between "soft production" and "hard production"

PLB 756 (2016) 10-28

... this can be evaluated as a function of x-target and x-projectile (~ Bjorken x)

The target is the analogue of the nucleus **in p+Pb** collisions, projectile analogue of proton ... small sensitivity of ΣE_T to x-projectile suggests that effects seen in p+Pb jets are **not due to trivial anti-correlation in individual nucleon-nucleon collisions** (e.g. "energy conservation").

Physics of Pb+Pb collisions

Charged particle spectra at high-pt

JHEP09 (2015) 050

- Charged particle R_{AA} at **up to 150 GeV**. A **flattening** of R_{AA} at high- p_T seen.
- R_{AA} differentially in **pseudorapidity**. No obvious pseudorapidity dependence observed which is consistent with observation made in jet R_{AA} .

Inclusive jet suppression

$$R_{\rm AA} = \frac{\frac{1}{N_{\rm evnt}} \frac{\mathrm{d}^2 N_{\rm jet}^{PbPb}}{\mathrm{d}p_{\rm T} \mathrm{d}y} \Big|_{\rm cent}}{\langle T_{\rm AA} \rangle_{\rm cent} \times \frac{\mathrm{d}^2 \sigma_{\rm jet}^{pp}}{\mathrm{d}p_{\rm T} \mathrm{d}y}}$$

- A modest grow of jet R_{AA} with increasing jet p_T .
- Still significant suppression even for 60-80% centrality bin.
- Practically no rapidity dependence.

Jet fragmentation

ATLAS-CONF-2015-055

$$R_{D(z)} = \frac{D(z)|_{\text{cent}}}{D(z)|_{pp}}$$

$$D(z) = \frac{1}{N_{jet}} \frac{\mathrm{d}N}{\mathrm{d}z}$$

$$z = \frac{p_{\rm T}}{p_{\rm T}^{jet}} \cos \Delta R$$

Jet fragmentation

ATLAS-CONF-2015-055

Centrality dependence

- Enhancement at low -z and at high-z
- Suppression at intermediate z

Jet pt dependence

 No significant dependence on jet pt

Rapidity dependence

Hint of a difference in the enhancement for different rapidity ... consistent with prediction in arXiv:1504.05169

38th International Conference on High Energy

lcs, ICHEP 2016

Jet fragmentation – flow of particles

• To quantify the flow of particles:

$$N^{
m ch} \equiv \int_{m{p}_{
m T,min}}^{m{p}_{
m T,max}} \left(D(m{p}_{
m T})|_{
m cent} - D(m{p}_{
m T})|_{
m pp}
ight) \, {
m d}m{p}_{
m T}$$

 \dots as a function of N_{part}

Tells us how many extra/missing particles is present in a given p_T range

Jet fragmentation – flow of energy

ATLAS-CONF-2015-055

• To quantify the flow of momentum:

$$P_{\mathrm{T}}^{\mathrm{ch}} \equiv \int_{m{p}_{\mathrm{T,min}}}^{m{p}_{\mathrm{T,max}}} \left(D(m{p}_{\mathrm{T}})|_{\mathrm{cent}} - D(m{p}_{\mathrm{T}})|_{\mathrm{pp}} \right) \, m{p}_{\mathrm{T}} \, \, \mathrm{d}m{p}_{\mathrm{T}}$$

 \dots as a function of N_{part}

Tells us how much p_T is carried by extra/missing particles in a given p_T range

Dijet production

ATLAS-CONF-2015-052

- Updated dijet asymmetry measurement
- Uses 2D bayesian unfolding to correct for the detector effects in p_{T1} and p_{T2} simultaneously
- Energy loss very different for two jets in the system

Dijet production

38th International Confusion on Figure 210147

hysics, ICHEP 2016

Neighboring jet production

PLB 751 (2015) 376

 Neighboring jet production quantified using quantity previously measured at Tevatron

$$R_{\Delta R} = \frac{1}{\mathrm{d}N_{\mathrm{jet}}^{\mathrm{test}}/\mathrm{d}E_{\mathrm{T}}^{\mathrm{test}}} \sum_{i=1}^{N_{\mathrm{jet}}^{\mathrm{test}}} \frac{\mathrm{d}N_{\mathrm{jet},i}^{\mathrm{nbr}}}{\mathrm{d}E_{\mathrm{T}}^{\mathrm{test}}} (E_{\mathrm{T}}^{\mathrm{test}}, E_{\mathrm{T,min}}^{\mathrm{nbr}}, \Delta R)$$

... the rate of **neighboring jets that accompany** a given **test jet**.

• To quantify the centrality dependence the central-to-peripheral ratios, $\rho(R_{\Delta R})$, also evaluated.

Neighboring jet production

PLB 751 (2015) 376

- Central-to-peripheral ratio of $R_{\Delta R}$ as a function of neighboring jet E_T .
- Decrease of suppression with increasing jet E_T .

Di-muons in ultra-peripheral collisions in run 2

ATLAS-CONF-2016-025

- Di-muons produced in the electromagnetic interaction between the two nuclei
- The photon flux well modeled by STARLIGHT 1.1

Outlook

... great statistics up to 200 GeV

Outlook

Summary

• p+Pb collisions:

- Inclusive jet R_{pPb} is centrality and pseudorapidity dependent
- Pseudorapidity dependent anti-correlation between "soft" and "hard" production seen in pp collisions have implications for p+Pb physics
- Charged particle production ... dependence on the Glauber model

Pb+Pb collisions:

- Charged particle R_{AA} measured up to 150 GeV, jet R_{AA} up to 400 GeV ... almost no y dependence, sizable suppression even for 60-80%
- Jet internal structure measured differentially in jet pt and rapidity
- First fully corrected di-jet measurement exhibits very pronounced difference between Pb+Pb and pp collisions
- Production of nearby jets quantified

Backup slides

$$x_{\text{proj/trag}} = \frac{p_{\text{T}}^{\text{avg}}}{\sqrt{s}} \left(e^{\frac{+}{s}\eta_1} + e^{\frac{+}{s}\eta_2}\right)$$

$$x_{\text{proj/trag}} = \frac{p_{\text{T}}^{\text{avg}}}{\sqrt{s}} \left(e^{\frac{+}{s}\eta_1} + e^{\frac{+}{s}\eta_2} \right)$$

Jet event shape correlations

- Study the dependence of the dijet asymmetry on the **angle between the leading jet and second order event plane =>** help constraining the **path length dependence** of the jet quenching.
- Evaluating second Fourier coefficient of mean A₁:

$$\langle A_{\rm J}\rangle(\phi^{\rm Lead} - \Psi_2) = A_{\rm J}^0 \left(1 + 2c_2^{\rm obs}\cos(2\times|\phi^{\rm Lead} - \Psi_2|)\right)$$

Jet event shape correlations

$$c_2 = \frac{c_2^{\text{obs}}}{\text{Res}\{2\Psi_2\}}$$

 c_2 small (<2%), negative indicating slightly larger A_J for leading jets oriented out-of-plane than for jets oriented in-plane.

(a) p+Pb collision

(b) pp collision

Anti-correlation can be evaluated also
 as a function of x-projectile and x-target

$$x_{\text{proj/trag}} = \frac{p_{\text{T}}^{\text{avg}}}{\sqrt{s}} \left(e^{\frac{+}{s}\eta_1} + e^{\frac{+}{s}\eta_2} \right)$$

Example of configurations:

Jet yields and R_{pPb}

arXiv:1412.4092

- 0-90% R_{pPb} compared to NLO with EPS09 nPDFs
- R_{pPb} does not differ much from unity if measured inclusively in centrality, **but** ...

Jet R_{pPb} and R_{CP}

Jet R_{pPb} and R_{CP}

Inclusive jet suppression

- Detailed estimation of jet energy scale uncertainty.
- Using *in situ* techniques (γ +jet and Z+jet) and limits on the impact of modified fragmentation on jet energy scale.
- Same level of **rigor as in precision pQCD** measurement should be a standard for precision HI measurements in the run II.

Z boson production in p+Pb

$$x_{Pb} = \frac{m_{\ell\ell} e^{-y_Z^*}}{\sqrt{s_{NN}}}$$

Z boson production in p+Pb

Fragmentation functions in different generators

J/Psi and Psi(2) in p+Pb

Isolated prompt photons

$$\frac{1}{N_{\text{evt}}(C)} \frac{dN_{\gamma}}{dp_{\text{T}}}(p_{\text{T}}, \eta, C) = \frac{N_{\text{A}}^{\text{sig}} \mathcal{U}(p_{\text{T}}, \eta, C) \mathcal{W}(p_{\text{T}}, \eta, C)}{N_{\text{evt}}(C) \epsilon_{\text{tot}}(p_{\text{T}}, \eta, C) \Delta p_{\text{T}}}$$

Jet R_{AA}

Jet R_{AA}

$R_{D(z)}$ in Pb+Pb for R=0.4 jets

$R_{D(pt)}$ in Pb+Pb for R=0.4 jets

Jet and event shape correlations, system size from a simple model

Jet and event shape correlations

Jet and event shape correlations, c₂ differentially in q₂

Neighboring jet production

 Neighboring jet production quantified using quantity previously measured at Tevatron

$$R_{\Delta R} = \frac{1}{\mathrm{d}N_{\mathrm{jet}}^{\mathrm{test}}/\mathrm{d}E_{\mathrm{T}}^{\mathrm{test}}} \sum_{i=1}^{N_{\mathrm{jet}}^{\mathrm{test}}} \frac{\mathrm{d}N_{\mathrm{jet},i}^{\mathrm{nbr}}}{\mathrm{d}E_{\mathrm{T}}^{\mathrm{test}}} (E_{\mathrm{T}}^{\mathrm{test}}, E_{\mathrm{T,min}}^{\mathrm{nbr}}, \Delta R)$$

... the rate of neighboring jets that accompany a given test jet.

• $R_{\Delta R}$ evaluated also differentially in neighboring jet Et

$$\frac{\mathrm{d}R_{\Delta R}}{\mathrm{d}E_{\mathrm{T}}^{\mathrm{nbr}}} = \frac{1}{\mathrm{d}N_{\mathrm{jet}}^{\mathrm{test}}/\mathrm{d}E_{\mathrm{T}}^{\mathrm{test}}} \sum_{i=1}^{N_{\mathrm{jet}}^{\mathrm{test}}} \frac{\mathrm{d}^{2}N_{\mathrm{jet},i}^{\mathrm{nbr}}}{\mathrm{d}E_{\mathrm{T}}^{\mathrm{test}}\mathrm{d}E_{\mathrm{T}}^{\mathrm{nbr}}} (E_{\mathrm{T,min}}^{\mathrm{test}}, E_{\mathrm{T}}^{\mathrm{nbr}}, \Delta R)$$

- ... which are the E_T spectra of the third (or n^{th}) jet given the test jet E_T
- To quantify the centrality dependence the central-to-peripheral ratios, $\rho(R_{\Delta R})$, also evaluated

Correction flow for neighboring jet yields

Unfolded = k * (Raw - Combinatorics)

Central-to-peripheral ratios

Central to peripheral ratio of $R_{\Delta R}$ as a function of <u>test jet E_T </u>.

- -> suppression factor of about 0.5
- -> suppression rather flat with E_{T}

similar trends as in the inclusive jet R_{CP}

Central-to-peripheral ratios

Central to peripheral ratio of $R_{\Delta R}$ as a function of <u>neighboring jet E_T </u>. Decrease of suppression with increasing jet E_T ... may be expected for the configuration of magnitude of neighboring jet E_T approaching the magnitude of test jet E_T (the per-test jet normalization in the $R_{\Delta R}$ effectively removes the suppression).