

High multiplicity p+Pb event

Run:217946 $N_{\rm Trk} (p_{\rm T} > 0.4 \, {\rm GeV}) = 273,$ Event:32291041 $N_{\rm Trk} (p_{\rm T} > 1.0 \, {\rm GeV}) = 106 \, ({\rm shown})$ Date:2013-01-20FCal A (Pb going side) $\Sigma E_{\rm T} = 139 \, {\rm GeV}$

Measurement of the ridge correlations in pp and pPb collisions with the ATLAS detector at the LHC

Anne M. Sickles for the ATLAS Collaboration

ridge correlations in pPb & pp

what are the properties of the ridge? how do those depend on collision energy and system? what is the multiplicity dependence of the ridge?

- pp: 2.76 TeV, 5.02 TeV, 13 TeV
- **pPb**: 5.02 TeV
- high multiplicity triggers provide large sample of these rare events

ATLAS-CONF-2016-026

how to extract the ridge signal

- ridge is a small effect compared to other features of the two particle correlations
- observed to grow with track multiplicity
 - →use template fitting to extract the correlated signal

extracted v2,2

 $v_2(p_{T_1}) = v_{2,2}(p_{T_1}, p_{T_2}) / \sqrt{v_{2,2}(p_{T_2}, p_{T_2})},$

 v_2 independent of \sqrt{s} & track multiplicity

n > 2 Fourier coefficients

residual deviations from template consistent with cos(3ΔΦ) & cos(4ΔΦ) components

5.02 TeV: pp & pPb collisions

pp 13 TeV pp 5.02 TeV

pPb 5.02 TeV

similar features in all collision systems template fits enable v₂ extraction

pPb: n = 2, 3 modulations

10

template fits with and without ZYAM

modified template fitting method reduces low N_{ch} dependence of v₂ on choice of peripheral bin

pPb & pp comparison

pPb: larger v₂ & v₃ than pp

pp: consistent v₂ between **5.02** & **13** TeV

p_T dependence of v_2 in pp & pPb

similar (but not identical) shapes between pp & pPb

summary

- template fitting method provides a robust method to extract v_{N} in very small systems
 - independent of identifying a signal free peripheral sample
- pp collisions: no collision energy dependence observed in 2.76, 5.02 & 13 TeV
- pp v_N independent of multiplicity
- pPb: increase in v_2 , $v_3 \& v_4$ with multiplicity
- similar shapes, but not magnitudes of v₂(p_T) in pp & pPb collisions
- these measurements provide a wealth of data to understand anisotropies in small systems
- · looking forward to 8 TeV pPb data this year!