http://atlas.ch

High multiplicity p+Pb event
Run: $\quad 217946 \quad N_{\text {Tk }}\left(p_{\mathrm{r}}>0.4 \mathrm{GeV}\right)=273$,
Event: $32291041 \quad N_{\mathrm{Tk}}^{\mathrm{mk}}\left(p_{\mathrm{T}}>1.0 \mathrm{GeV}\right)=106$ (shown)
Date: 2013-01-20 $\quad \mathrm{FCal} A\left(\mathrm{~Pb}\right.$ going side) $\Sigma E_{\mathrm{T}}=139 \mathrm{GeV}$

Measurement of the ridge correlations in pp and pPb collisions with the ATLAS detector at the LHC

ridge correlations in pPb \& pp

what are the properties of the ridge?
how do those depend on collision energy and system? what is the multiplicity dependence of the ridge?

datasets

- pp: 2.76 TeV, 5.02 TeV, 13 TeV
- pPb: 5.02 TeV
- high multiplicity triggers provide large sample of these rare events

how to extract the ridge signal

- ridge is a small effect compared to other features of the two particle correlations
- observed to grow with track multiplicity
- \rightarrow use template fitting to extract the correlated signal low multiplicity
high multiplicity

fitting procedure

$\Delta \phi$

$$
Y^{\text {templ }}(\Delta \phi)=F Y^{\text {periph }}(\Delta \phi)+Y^{\text {ridge }}(\Delta \phi)
$$

$$
Y^{\text {ridge }}(\Delta \phi)=G\left(1+2 v_{2,2} \cos (2 \Delta \phi)\right)
$$

fit free parameters:
$F \& v_{2,2}$
G fixed such that:
$\int_{0}^{\pi} \mathrm{d} \Delta \phi Y^{\text {templ }}=\int_{0}^{\pi} \mathrm{d} \Delta \phi Y$.

extracted v2,2

$v_{2}\left(p_{\mathrm{T}_{1}}\right)=v_{2,2}\left(p_{\mathrm{T}_{1}}, p_{\mathrm{T}_{2}}\right) / \sqrt{v_{2,2}\left(p_{\mathrm{T}_{2}}, p_{\mathrm{T}_{2}}\right)}$,
$\mathbf{V}_{\mathbf{2}, \mathbf{2}}$
\mathbf{V}_{2}

extracted v_{2} independent of $\mathrm{p}_{\mathrm{T}, 2}$ range: factorization

v_{2} in pp at $2.76 \& 13 \mathrm{TeV}$

v_{2} independent of $\sqrt{ } s$ \& track multiplicity

$n>2$ Fourier coefficients

$Y(\Delta \phi)$

residual deviations from template consistent with $\cos (3 \Delta \Phi) \& \cos (4 \Delta \Phi)$ components

5.02 TeV: pp \& pPb collisions

pp 13 TeV
 pp 5.02 TeV

pPb 5.02 TeV

similar features in all collision systems template fits enable v_{2} extraction

pPb: n = 2, 3 modulations

$\mathrm{V}_{\mathrm{n}, \mathrm{n}}$

template fits with and without ZYAM

pPb \& pp comparison

pPb: larger $\mathrm{v}_{2} \& \mathrm{v}_{3}$ than pp
pp: consistent v_{2} between 5.02 \& 13 TeV

V_{n} VS P_{T}

P_{T} dependence of v_{2} in $\mathrm{pp} \& \mathrm{pPb}$

pp scaled by 1.51

similar (but not identical) shapes between pp \& pPb

summary

- template fitting method provides a robust method to extract v_{N} in very small systems
- independent of identifying a signal free peripheral sample
- pp collisions: no collision energy dependence observed in 2.76, 5.02 \& 13 TeV
- pp v_{N} independent of multiplicity
- pPb: increase in $v_{2}, v_{3} \& v_{4}$ with multiplicity
- similar shapes, but not magnitudes of $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ in $\mathrm{pp} \& \mathrm{pPb}$ collisions
- these measurements provide a wealth of data to understand anisotropies in small systems
- looking forward to 8 TeV pPb data this year!

