
Lepton Flavour (Universality) Violation in Rare Kaon Decays

In collaboration with A. Crivellin, G. D'Ambrosio & M. Hoferichter [arXiv:1601.00970]

Lewis TunstallAlbert Einstein Centre for Fundamental PhysicsInstitute for Theoretical PhysicsUniversity of BernAECALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICSICHEP // Chicago // 3-10 August // 2016

Violation of Lepton Flavor and Lepton Flavor Universality in Rare Kaon Decays

In collaboration with A. Crivellin, G. D'Ambrosio & M. Hoferichter [arXiv:1601.00970]

Lewis TunstallAlbert Einstein Centre for Fundamental PhysicsInstitute for Theoretical PhysicsUniversity of BernAEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICSICHEP // Chicago // 3-10 August // 2016

0 | Motivation

Is New Physics lurking in semi-leptonic B-decays?

Among several recent flavour anomalies, two at LHCb have received considerable attention:

1

VS.

a 2.6 σ signal of Lepton Flavour Universality Violation (LFUV) in $B \to K \ell^+ \ell^-$ decays

$$R_K = \frac{\text{Br}[B^+ \to K^+ \mu^+ \mu^-]_{[1,6]}}{\text{Br}[B^+ \to K^+ e^+ e^-]_{[1,6]}} = 0.745 \cdot (1 \pm 13\%) \quad \text{[LHCb (14)]}$$

 $R_K^{\rm SM} = 1.003 \pm 0.0001$ [Bobeth, Hiller, Piranishvili (<u>07</u>)]

2 measured value of angular observable P'_5 in $B \to K^* \mu^+ \mu^-$ deviates from SM at 2-3 σ level

[Descotes-Genon et al. (<u>13</u> & <u>14</u>); Altmannshofer & Straub (<u>15</u>); Jäger & Martin Camalich (<u>16</u>)]

0 | Motivation

Each deviation at most a 3σ effect, but ... global fits with other $b \rightarrow s$ transitions indicate [Altmannshofer & Straub (<u>15</u>); Descotes-Genon et al. (<u>15</u>)]

- New Physics (NP) is preferred over SM by 4-5 σ
- The effect is in $\mu\mu$ modes only

Expressed in terms of the effective $\Delta B=1$ Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i^B(\mu) Q_i^B(\mu)$$

potential NP interpreted as contributions to Wilson coefficients $C_{9,10}^B$ of

$$Q_9^B = \frac{e^2}{32\pi^2} \left[\bar{s}\gamma^{\mu} (1-\gamma_5)b \right] \sum_{\ell=e,\mu} \left[\bar{\ell}\gamma_{\mu}\ell \right] \quad \text{(vector)}$$
$$Q_{10}^B = \frac{e^2}{32\pi^2} \left[\bar{s}\gamma^{\mu} (1-\gamma_5)b \right] \sum_{\ell=e,\mu} \left[\bar{\ell}\gamma_{\mu}\gamma_5\ell \right] \quad \text{(axial-vector)}$$

1 | Kaon probes of LFUV

This talk: examine complementary role that rare kaon decays can provide in testing NP explanations of the B-anomalies

Key idea & outline

1) Consider low energy scales $\mu \ll m_{t,b,c}$ and decouple heavy quarks

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_i C_i(\mu) Q_i(\mu) \qquad (\Delta S = 1)$$

Observe that the semi-leptonic operators

$$Q_{7V} = [\bar{s}\gamma^{\mu}(1-\gamma_5)d] \sum_{\ell=e,\mu} [\bar{\ell}\gamma_{\mu}\ell]$$
$$Q_{7A} = [\bar{s}\gamma^{\mu}(1-\gamma_5)d] \sum_{\ell=e,\mu} [\bar{\ell}\gamma_{\mu}\gamma_5\ell]$$

are the $s \to d$ analogues of the $b \to s$ operators $Q^B_{9,10}$

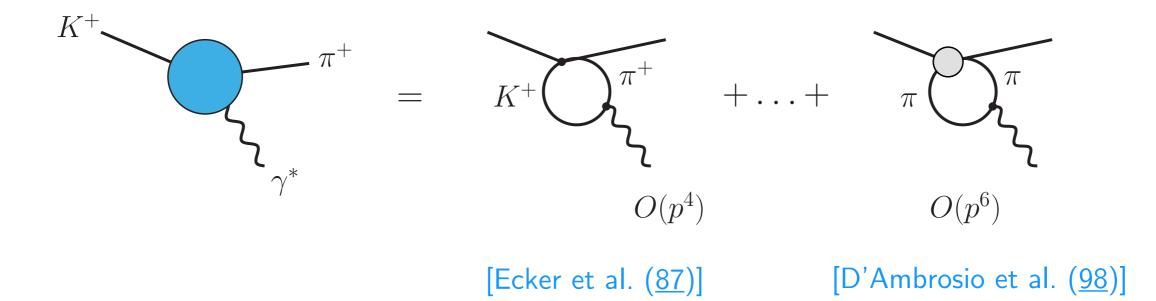
2 In the framework of Minimal Flavour Violation (MFV) observe that $C_{7V,7A}$ are correlated with $C_{9,10}^B$

 \Rightarrow convert knowledge of $C_{7V,7A}$ into **bounds** on $C_{9,10}^B$

Problem: quality of bounds limited by non-perturbative effects from QCD

 \Rightarrow parameterise ignorance via low-energy constants (LECs) of χ PT

3 Focus on experimental determination of LECs in rare kaon decays


 $K^{\pm} \to \pi^{\pm} \ell^+ \ell^-$ and $K_L \to \ell^+ \ell^-$

NB. Measurements at NA62 may improve the resulting limits on $C_{9,10}^B$

Similar strategy adopted to obtain bounds on LFV in B-meson sector

2 | LFUV and $K^{\pm} \rightarrow \pi^{\pm} \ell^+ \ell^-$

Dominant contribution to $K^{\pm} \to \pi^{\pm} \ell^+ \ell^-$ due to $K^{\pm} \to \pi^{\pm} \gamma^*$ transition:

Chiral dynamics contained in vector form factor:

$$V_{+}(z) = a_{+} + b_{+}z + V_{+}^{\pi\pi}(z), \qquad z = q^{2}/m_{K}^{2}$$

Chiral symmetry alone does not constrain value of LECs a_+ and b_+ [Recent lattice determinations at unphysical kinematics, Christ et al. (<u>15 & 16</u>); See also Chris Kelly's <u>talk</u>]

 \Rightarrow consider measurements of spectrum $d\Gamma/dz \propto |V_+(z)|^2$

2 | LFUV and $K^{\pm} \rightarrow \pi^{\pm} \ell^+ \ell^-$

Fits to E865 and NA48/2 spectra yield

$$a_{+}^{ee} = -0.584 \pm 0.008$$
 $a_{+}^{\mu\mu} = -0.575 \pm 0.039$

Key point: if LFU applies $\Rightarrow a_{+}^{ee} \equiv a_{+}^{\mu\mu}$ (valid in SM)

 \therefore LFUV can be probed in differences such as $a_{+}^{ee} - a_{+}^{\mu\mu} \neq 0$

One can show that
$$C_{7V}^{\mu\mu} - C_{7V}^{ee} = \alpha \frac{a_+^{\mu\mu} - a_+^{ee}}{2\pi\sqrt{2}V_{ud}V_{us}^*}$$

⇒ In MFV framework, difference converted into constraint

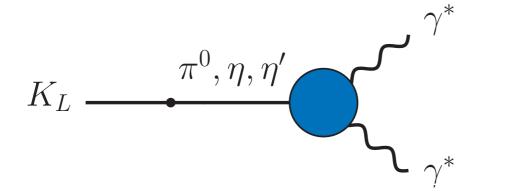
$$C_9^{B,\mu\mu} - C_9^{B,ee} = -\frac{a_+^{\mu\mu} - a_+^{ee}}{\sqrt{2}V_{ts}^* V_{td}} \approx -19 \pm 79$$

2 | LFUV and $K^{\pm} \rightarrow \pi^{\pm} \ell^+ \ell^-$

Conclude?

$$C_9^{B,\mu\mu} - C_9^{B,ee} = -\frac{a_+^{\mu\mu} - a_+^{ee}}{\sqrt{2}V_{ts}^* V_{td}} \approx -19 \pm 79$$

- NP parameter space relevant for B-anomalies involves $C_{9,10}^B = O(1)$
 - ⇒ Determination of $a^{\mu\mu}_{+} a^{ee}_{+}$ needs (at least) order of magnitude improvement to probe NP explanations of B-anomalies
- Remarkably, improvements of this size may be possible at the NA62 experiment:


High statistics: nominal # of decays ≈ 50 times greater than NA48/2

⇒ **Proposal:** measure
$$K^{\pm} \to \pi^{\pm} \ell^+ \ell^-$$
 spectrum to extract $a^{\mu\mu}_+$
at high precision (currently has largest uncertainty)

3 | LFUV and $K_L \rightarrow \ell^+ \ell^-$

Complementary to $K^{\pm} \rightarrow \pi^{\pm} \ell^+ \ell^-$ since probes LFUV effects due to **axial-vector** interactions

Dominant long-distance contribution due to $K_L \to \gamma^* \gamma^* \to \ell^+ \ell^-$

[Gomez Dumm & Pich (<u>98</u>); Knecht et al. (<u>99</u>); Isidori & Unterdorfer (<u>03)</u>]

Dispersive component of amplitude (normalised to $K_L \rightarrow \gamma \gamma$):

$$F_{\ell,\text{disp}} = \frac{1}{4\beta_{\ell}} \log^2 \left(\frac{1-\beta_{\ell}}{1+\beta_{\ell}} \right) + \frac{1}{\beta_{\ell}} \text{Li}_2 \left(\frac{\beta_{\ell}-1}{\beta_{\ell}+1} \right) \\ + \frac{\pi^2}{12\beta_{\ell}} + 3\log \frac{m_{\ell}}{\mu} + \chi(\mu)$$

$$LECs \text{ strike again!} \\ \chi(\mu) = \chi_{\gamma\gamma}(\mu) + \chi_{\text{SD}}$$

3 | LFUV and $K_L \rightarrow \ell^+ \ell^-$

Same argument as for $K^{\pm} \to \pi^{\pm} \ell^+ \ell^-$: if LFU applies $\Rightarrow \chi_{ee} \equiv \chi_{\mu\mu}$

... LFUV can be probed by considering the difference

$$C_{7A}^{\mu\mu} - C_{7A}^{ee} = -\frac{\alpha}{F_K G_F V_{ud} V_{us}^*} \left(\frac{2\Gamma_{\gamma\gamma}}{\pi m_K^3}\right)^{1/2} (\chi_{\mu\mu} - \chi_{ee})$$

measured quantities

⇒ In MFV framework, difference related to axial-vector coefficients

$$C_{10}^{B,\mu\mu} - C_{10}^{B,ee} = 2.6 \left(\frac{3.5 \times 10^{-4}}{V_{ts}^* V_{td}}\right) \left(\chi_{\mu\mu} - \chi_{ee}\right)$$

Quality of bounds on $C_{10}^{B,\ell\ell}$ depends on precision with which $\chi_{\ell\ell}$ can be determined

3 | LFUV and $K_L \rightarrow \ell^+ \ell^-$

Extract $\chi_{\ell\ell}$ from data?

The present situation is as follows:

• Fit to measured rates yields two solutions per channel

Channel	χ (Solution 1)	χ (Solution 2)
ee	$5.1^{+15.4}_{-10.3}$	$-(57.5^{+15.4}_{-10.3})$
$\mu\mu$	3.75 ± 0.20	1.52 ± 0.20

• Suppose uncertainty can be reduced at future K_L experiment (e.g. KOTO adapted to detect charged leptons) by factor of ≈ 10 :

$$\chi_{\mu\mu} - \chi_{ee} \approx 1.3 \pm 1.3 \qquad \Leftrightarrow \qquad C_{10}^{B,\mu\mu} - C_{10}^{B,ee} \approx 3.5 \pm 3.5$$

⇒ Improvement required to obtain competitive bounds on $C_{10}^{B,\ell\ell}$ of similar magnitude to that found for $C_9^{B,\ell\ell}$ in $K^{\pm} \to \pi^{\pm} \ell^+ \ell^-$

4 | Lepton flavour violating decays

Adopt similar strategy to analysis of LFUV in $K \to \pi \ell \ell$ and $K_L \to \ell \ell$: MFV {Limits on kaon sector $C^{\mu e}_{7V,7A}$ } \iff {Bounds on $b \to s$ transitions}

Analysis simplified by absence of LFV in SM (modulo ν oscillations)

⇒ amplitude factorises so no problem with LECs

Key modes

$$Br[K^{+} \to \pi^{+} \mu^{\pm} e^{\mp}] \propto \{ |C_{7V}^{\mu e}|^{2} + |C_{7A}^{\mu e}|^{2} \}$$
(NA62)
$$Br[K_{L} \to \mu^{\pm} e^{\mp}] \propto \{ |C_{7V}^{\mu e}|^{2} + |C_{7A}^{\mu e}|^{2} \}$$
(KOTO?)

				$K^+ \to \pi^+ \mu^\pm e^\mp$ (NA62 projection)
$\left(C^{\mu e}_{7V} ^2 + C^{\mu e}_{7A} ^2\right)^{1/2}$	$< 1.3 \times 10^{-6}$	$< 2.2 \times 10^{-5}$		$< 5.1 \times 10^{-6}$
$\left(y_{7V}^{\mu e} ^2+ y_{7A}^{\mu e} ^2 ight)^{1/2}$			< 0.040	
$\frac{\left(C_9^{B,\mu e} ^2 + C_{10}^{B,\mu e} ^2\right)^{1/2}}{\left(C_9^{B,\mu e} ^2\right)^{1/2}}$	< 0.71	< 12	< 35	< 2.7

Strongest bound from $K_L \rightarrow \mu e$... but remove GigaTracker at NA62?

5 | Remarks and future prospects

Rare kaon decays offer probe into NP explanations of anomalies @ LHCb Within framework of MFV have discussed how

{Limits on LFUV & LFV in K decays} \Leftrightarrow {Bounds on $C_{9,10}^B$ }

Potential NP may not satisfy MFV \Rightarrow 3 possibilities to test at NA62:

- 1. NP explanation of B-anomalies consistent with MFV
 - \Rightarrow should see signal at projected sensitivities
- 2. Kaon searches at MFV-expected sensitivity turn out negative
 - \Rightarrow any NP explanation of B-anomalies requires departures from MFV
- 3. Signal observed at current or slightly improved sensitivity
 - $\Rightarrow~$ can rule out NP explanations of B-anomalies based on MFV