

A level-1 pixel based track trigger for the CMS HL-LHC upgrade

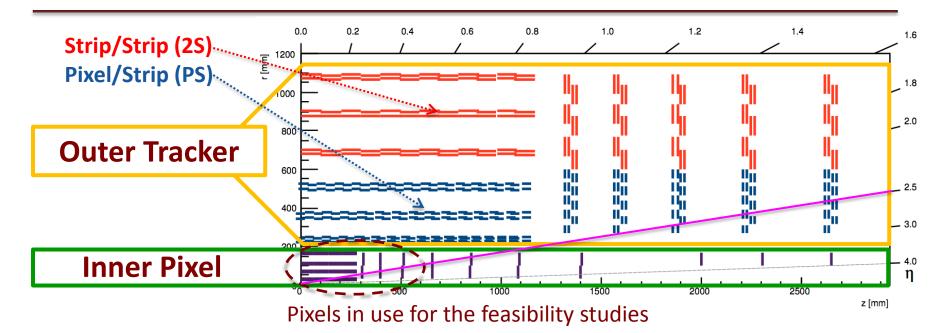
Chang-Seong Moon SPRACE – UNESP For the CMS Collaboration

> ICHEP 2016, Chicago August 4th, 2016

Outline

- Introduction
- Motivation for a Level-1 (L1) Pixel Track Trigger
- Simulation framework
- L1 Pixel Trigger strategies
- Feasibility studies of a simulated L1 Pixel Trigger on:
 - Electron identification and L1 electron trigger performance
 - Jet vertexing and L1 b-tagging
- Concluding remarks

Disclaimer: Current baseline options for a L1 Track Trigger are all based on Outer Tracker modules and not the HL-LHC pixel system. This is work in progress on the study of the potential of a L1 Pixel Trigger included in the context of the L1 Trigger for Phase 2 upgrade in CMS at HL-LHC.

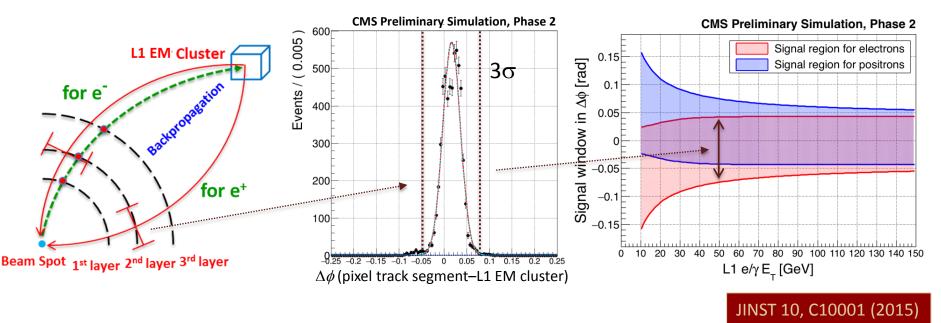

Introduction

- The current Level-1 Trigger at CMS
 - Maximum bandwidth of 100 kHz and latency of 4.5 μsec
 - Electron/Gamma, Tau, Jet based on calorimeters
 - Muon reconstructed by muon chambers
 - No tracking information at Level-1
- The High Luminosity LHC (HL-LHC) conditions are characterized by:
 - Instantaneous luminosity of 5×10^{34} cm⁻²s⁻¹ and 140 average Pile-up (PU) events
 - Large increase in the rates of the physics processes
- The main goal for the L1 trigger of CMS Phase 2 Upgrade:
 - Maintain or even improve the overall physics potential despite the challenging HL-LHC conditions by:
 - Avoiding the increase of the trigger thresholds
 - □ Refining the selection of physics objects at L1
 - Maximum bandwidth of 750 kHz and latency of 12.4 μsec
- The L1 Track Trigger for Phase 2 Upgrade at HL-LHC: a new L1 key element
 - Self-seeded L1 Track Trigger based on L1 Outer Tracker:
 - **Given Second Struct "L1 tracks" with** $p_T > 2$ GeV.
 - □ Identify z position along beam pipe within 1mm.
 - Feasibility and performances studies for the L1 Pixel Trigger:
 - □ How the pixels can further improve some features of the L1 Track Trigger of CMS.

Motivation

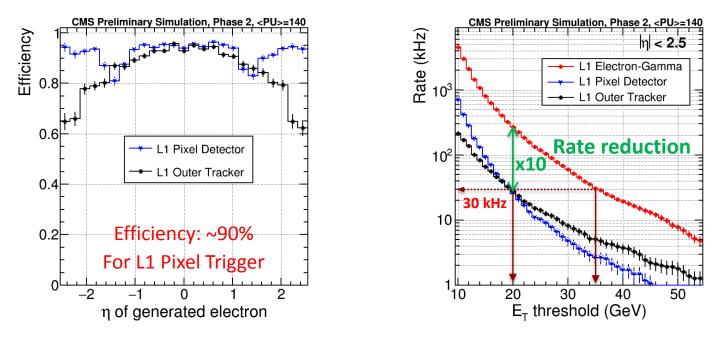
- Improvement of some features of the L1 Track Trigger:
 - Higher precision of the vertex resolution at L1
 - L1 electron trigger by matching L1 EM calorimeter tower with pixel hits:
 - Helps Improving fake electrons rejection
 - $\hfill\square$ Keeps high efficiency in the high η region
 - L1 b-tagging by combining L1 track with pixel hits:
 - Increases the chances of triggering on very rare physics processes with b-jets in final state at HL-LHC as for example:
 - Higgs pair production
 - Higgs production in association with a top quark pair
- High selection capability for events from low-mass processes
 - Retain good efficiency for Higgs decay products
 - □ Precision measurement of the Higgs coupling and its properties
 - New physics searches
 - SUSY and Dark Matter
 - $\hfill\square$ Rare decays in B Physics: Bs $\rightarrow \varphi \varphi \rightarrow 4$ K's
 - $\hfill\square$ Lepton Flavor Violation: $\tau \rightarrow 3~\mu 's$
 - Long Lived Charged particles

Simulation framework

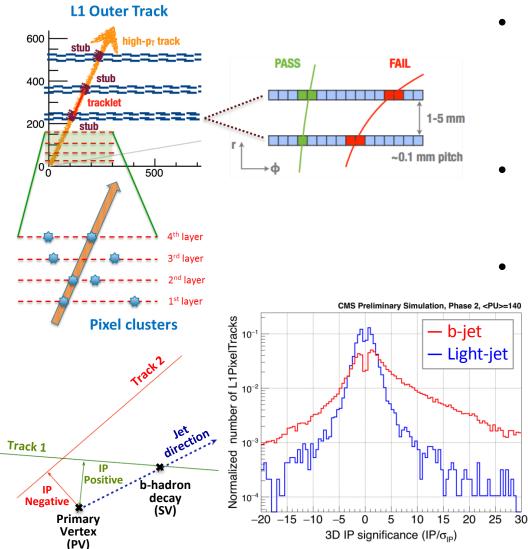


- Feasibility studies: based on the current Phase 2 CMS simulation framework with:
 - The L1 Outer Tracker as based on the flat barrel and endcap geometry design (not final design)
 - The Phase 1 Pixel Detector: 4 barrel layers & 3 disks pixels (i.e. not including the very forward disks)
 - The Phase 1 calorimeters:
 - □ Tower level EM cluster (not single crystal)
 - L1 jet reconstruction based on coarse calorimeter granularity
 - It provides a first good handle of the detector and trigger performance potentials for Phase 2 although underestimating them.
- New detailed simulation with final Phase 2 features is in preparation in CMS.
 - See Georg Auzinger's talk for Upgrade of the CMS Tracker for the HL-LHC

Chang-Seong Moon


L1 Pixel Trigger strategy for electron

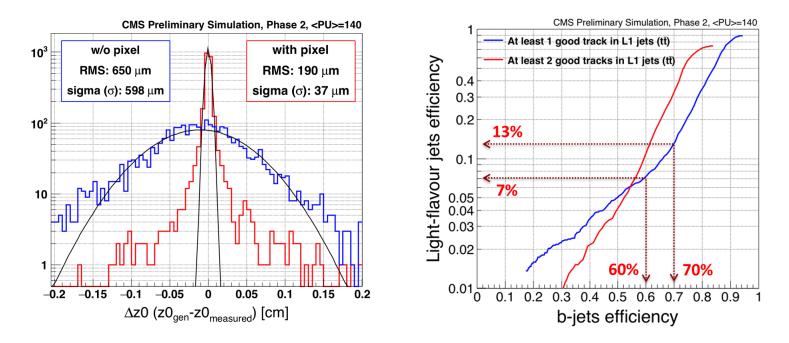
- Electron identification with the L1 Pixel Trigger:
 - Trigger strategy: seed by the L1 EM calorimeter
 - Matching the pixel tracks with the L1 EM cluster in the region of Interest
 - Pixel track matching algorithm developed for both electron and positron in $\Delta\phi$ and $\Delta\eta$ signal windows
 - □ Defined 3σ signal windows as a function of L1 e/ γ transverse energy (E_T) using single electron gun sample.


Performances of simulated L1 Pixel Trigger: electrons

- L1 single e/γ trigger E_T threshold: lowered from 35 GeV to 20 GeV at 30 kHz
 - Overall trigger rate reduced by a factor of ~10 (using either Inner Pixel or Outer Tracker) at 20 GeV E_T threshold.
- Average trigger efficiency: ~90% with the L1 pixels.
 - Similar efficiency with the L1 Pixel Detector as the L1 Outer Tracker in barrel region ($|\eta|<1$)
 - Keeping high efficiency by the L1 Pixel Trigger in high η region up to $|\eta| < 2.5$

• A factor of 2 better performance estimated with single crystal level EM calorimeter

L1 Pixel Trigger strategy for b-tagging


- L1 track from L1 Outer Tracker
 - Tracks filtered for p_T >2 GeV in frontend.
 - 97% tracks are rejected in minimum bias events.
- L1PixelTrack
 - L1 track used as a seed and combined with pixel information.

Main L1 b-tagging algorithm

- Employed the track counting method at L1.
- Based on 3D track impact parameter (3D IP) significance at L1.
- Required at least 1 or 2 L1PixelTrack(s) inside the L1 jet have a minimum value of the 3D IP significance.
- Imported HLT b-tagging technique to L1 in a simplified way.

L1 Pixel Trigger studies on jet vertex and b-tagging

- Studies on jet vertex determination and b-jet identification use a MC sample of $t\bar{t}$ events with <PU>=140 for $|\eta|<2.5$.
- Main results:
 - Improved jet vertex resolution: 40 μ m vs. 600 μ m without pixels
 - L1 b-tagging based on the track counting method:
 - □ (light jet efficiency, b-jet efficiency) ≈ (10%, ~65%)

Concluding remarks

- The feasibility and performance studies of a L1 Pixel Trigger for HL-LHC in CMS are underway.
 - Main goal: explore how it can further improve the L1 Track Trigger.
 - □ Presented results here: on electrons, jet vertexing and b-tagging.
 - □ Other studies are addressing: tau's, muons, very forward physics capability.
 - The new CMS simulation in preparation will further refine these studies.
- The potential benefits of a L1 Pixel Trigger shown here are on:
 - Improvement of the jet vertex reconstruction:
 - □ Resolution along the beam axis \approx O(40µm) with pixels instead of O(1mm) without pixels
 - Upgrade L1 trigger performance on:
 - $\hfill\square$ Electrons: sizeable L1 trigger rate reduction while keeping high trigger efficiency and low E_T thresholds
 - □ b-tagging: maximizing a capability to trigger the rare physics process with b-jets at L1.
 - \Rightarrow This impacts a large scope of Physics processes at HL-LHC.
- The integration of such a L1 Pixel Trigger means:
 - Overcoming high technical challenges: L1 bandwidth and L1 latency at HL-LHC
 - Implying developments on: the Frond-End ASIC (RD53), the design of the readout chain and integration in the L1 Trigger architecture for HL-LHC, the real time algorithms and test benchmarking platforms

References

- CMS Detector Performance Summaries
 - A level-1 pixel based track trigger for the CMS HL-LHC upgrade
 - http://cds.cern.ch/record/2203806
- Paper publication (JINST 10, C10001 (2015))
 - Level-1 pixel based tracking trigger algorithm for LHC upgrade
 <u>http://iopscience.iop.org/article/10.1088/1748-0221/10/10/C10001</u>
- Technical Proposal
 - The Phase-II Upgrade of the CMS Detector
 - http://cds.cern.ch/record/2020886