

Searches for squarks and gluinos in fully hadronic final states with the ATLAS detector International Conference on High Energy Physics, ICHEP 2016

David W. Miller on behalf of the ATLAS Collaboration

Enrico Fermi Institute

D. W. Miller (EFI, Chicago)

Outline

Introduction to hadronic SUSY Searches at 13 TeV SUSY at 13 TeV

• Search strategies and observables employed

Two all-hadronic SUSY Searches at 13 TeV

- Zero-lepton final states with 2-6 jets
- Multi-*b* jet final states with (& 1 lepton)

3 Summary and Conclusions

Supersymmetry (SUSY) at $\sqrt{s} = 13$ TeV

More information in arXiv:1411.1427

- Expect large increase of SUSY cross-sections going from 8 → 13 TeV
 σ(ğğ) increases by ×30 for m(ğ) = 1.4 TeV at 13 TeV
 - Very large phase space, e.g. m(ğ) − m(X₁⁰) ≫ m(t): → boosted top/W, compressed mass spectra, significant variety of final states!

• Strong focus on \tilde{g} initiated processes with first Run 2 data, with discovery potential beyond Run 1 limits with >10 fb⁻¹ of 13 TeV data

D. W. Miller (EFI, Chicago)

Supersymmetry (SUSY) at $\sqrt{s} = 13$ TeV

Just a few all-hadronic searches targeting many and vastly different final states

• Expect large increase of SUSY cross-sections going from $8 \rightarrow 13 \mbox{ TeV}$

- $\sigma(\tilde{g}\tilde{g}) \times 30$ for $m(\tilde{g}) = 1.4$ TeV
- Very large phase space, e.g. $m(\tilde{g}) m(\tilde{\chi}_1^0) \gg m(t)$: \rightarrow boosted top/*W*, compressed mass spectra, significant variety of final states!

• Strong focus on \tilde{g} initiated processes with first Run 2 data, with discovery potential beyond Run 1 limits with >10 fb⁻¹ of 13 TeV data

D. W. Miller (EFI, Chicago)

Searches for SUSY in fully hadronic final states

August 4, 2016 4 / 21

Search strategies for all-hadronic SUSY processes at 13 TeV

- Cut and count analysis strategies are used
- Signal regions (SR) \perp to validation (VR) & control regions (CR)
- SRs typically target large, intermediate, or small mass splittings
- Primary backgrounds from MC are normalized in CRs and tested in VRs

Classes of observables used when searching for SUSY

Three primary classes of event selection observables [arXiv:1605.01416] that are sensitive to distinct features of SUSY processes:

- **Missing energy-type:** sensitive to the properties of the invisible states, e.g. how many neutralinos in the event, what is their mass, etc.;
- Energy scale-type: sensitive to the overall energy scale of the event, e.g. the mass of the gluino $(m_{\bar{g}})$;
- **Energy structure-type:** sensitive to the structure of the visible energy, e.g. how many partons are generated in the decay, how that energy is partitioned across the final state objects (*both visible and invisible*);

 \rightarrow Observables that fall into each of these classes are used in the two searches that I will discuss in detail today.

13 TeV ATLAS searches using >10 fb⁻¹ of 2016 data discussed in this talk:

• Zero-lepton final states with 2-6 jets: ATLAS-CONF-2016-078

• Multi-*b* jet final states with 0 and 1 lepton: ATLAS-CONF-2016-052

Observables used in these two 13 TeV searches for SUSY

For the 13 TeV ATLAS searches, we utilize each of these classes:

- Missing energy-type:
 - Missing transverse momentum: $E_{\rm T}^{\rm miss}$ and $\vec{p_{\rm T}}^{\rm miss}$
 - Missing transverse momentum significance: $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$
 - **RJigsaw** *H*-scale for 1 visible, 1 invisible state: $H_{1,1}^{PP}$

• Energy scale-type:

• Effective mass:
$$M_{\text{eff}} = \sum_{\text{iets}} p_{\text{T}} + \sum_{\text{lentons}} + E_{\text{T}}^{\text{miss}}$$

- Scalar sum of visible momenta: $H_{\rm T}$,
- Transverse mass: $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}E_{\rm T}^{\rm miss}}(1 \cos(\Delta\phi(\vec{p_{\rm T}}^{\rm miss},\ell)))$ • RJigsaw H-scale: $H_{2,1}^{\rm PP}, H_{4,1}^{\rm PP}$

(b-quarks can also replace the lepton)

(also considering only first 4 large-radius jets)

(signed asymmetry between E_{T}^{miss} and jet azimuthal directions)

(also considering only first 4 jets)

(Similar to $M_{\rm eff}$)

(Similar to $E_{\rm T}^{\rm miss}$

(sum pT of ISR jets

(for all 0ℓ selections)

• Energy structure-type:

• Jet multiplicity: N_{jet} , N_{b-jet}

• **RJigsaw ISR** $p_{\rm T}$ scale: $|p_{TS}^{\rm ISR}|$

- **Total jet mass:** $M_{\rm J}^{\Sigma} = \sum m^{\rm jet}$
- Angular distributions: $\Delta \phi_{\min}^{4j} = \min(|\phi_{any-jet} \vec{p_T}^{miss}|) > 0.4$
- Aplanarity: $A = (3/2)\lambda_3$
- **QCD** $E_{\rm T}^{\rm miss}$ alignment: $\Delta_{\rm QCD}$

Recursive Jigsaw Reconstruction (RJR) for SUSY at 13 TeV

See the poster by Paul Jackson on RJR techniques and the recent paper (arXiv:1607.08307)

- Decompose events according to **particular decay topology assumption** and partition kinematics to **estimate missing degrees of freedom**
- "Hemispheres" defined using thrust axis of event
- Observables are computed by **minimizing hemisphere masses** and assigning missing degrees of freedom with each

D. W. Miller (EFI, Chicago)

Recursive Jigsaw Reconstruction (RJR) for SUSY at 13 TeV

See the poster by Paul Jackson on RJR techniques and the recent paper (arXiv:1607.08307)

- Decompose events according to **particular decay topology assumption** and partition kinematics to **estimate missing degrees of freedom**
- "Hemispheres" defined using thrust axis of event
- Observables are computed by **minimizing hemisphere masses** and assigning missing degrees of freedom with each

D. W. Miller (EFI, Chicago)

Outline

Introduction to hadronic SUSY Searches at 13 TeV
 SUSY at 13 TeV

• Search strategies and observables employed

Two all-hadronic SUSY Searches at 13 TeV

- Zero-lepton final states with 2-6 jets
- Multi-*b* jet final states with (& 1 lepton)

3 Summary and Conclusions

Targeting zero-lepton (0L) final states with 2-6 jets Just released for ICHEP! ATLAS-CONF-2016-078

- Two simultaneous strategies: Large M_{eff} and Recursive Jigsaw (RJR):
 - $M_{\text{eff}} > (0.8 2.2) \text{ TeV}, N_{\text{jet}} > (2 6), E_{\text{T}}^{\text{miss}} > 200, 500 \text{ GeV}, \Delta \phi > (0.2 0.4)$ $H_{1,1}^{\text{PP}}/H_{4,1}^{\text{PP}} > (0.2 0.35), \Delta_{\text{QCD}} > 0,$

 - \rightarrow First use of the RJR technique at the LHC!
- 30 signal regions between the M_{eff} and RJR analyses:
 - See backup slides for details!

Control regions (CR) establish backgrounds in assoc. signal regions (SR)

- $Z(\rightarrow \nu\nu)$ +jets: from γ + jets in CR γ

- $t\bar{t}$: from semileptonic $t\bar{t}$ in CRT

Validation regions (VR) are used to confirm the predictions from the CRs.

D. W. Miller (EFI, Chicago)

Targeting zero-lepton (OL) final states with 2-6 jets Just released for ICHEP! ATLAS-CONF-2016-078

- Two simultaneous strategies: Large *M*_{eff} and Recursive Jigsaw (RJR):
 - $M_{\text{eff}} > (0.8 2.2) \text{ TeV}, N_{\text{jet}} > (2 6), E_{\text{T}}^{\text{miss}} > 200, 500 \text{ GeV}, \Delta\phi > (0.2 0.4)$
 - $H_{1,1}^{\text{PP}}/H_{4,1}^{\text{PP}} > (0.2 0.35), \Delta_{\text{QCD}} > 0,$
 - \rightarrow First use of the RJR technique at the LHC!
- 30 signal regions between the $M_{\rm eff}$ and RJR analyses:
 - See backup slides for details!

Control regions (CR) establish backgrounds in assoc. signal regions (SR)

- $Z(\rightarrow \nu\nu)$ +jets: from γ + jets in CR γ
- Multi-jets: from multijets in CRQ
- W(→ ℓν)+jets: from W+jets in CRW
 tī: from semileptonic tī in CRT

Validation regions (VR) are used to confirm the predictions from the CRs.

D. W. Miller (EFI, Chicago)

Targeting zero-lepton (OL) final states with 2-6 jets Just released for ICHEP! ATLAS-CONF-2016-078

- Two simultaneous strategies: Large *M*_{eff} and Recursive Jigsaw (RJR):
 - $M_{\text{eff}} > (0.8 2.2) \text{ TeV}, N_{\text{jet}} > (2 6), E_{\text{T}}^{\text{miss}} > 200, 500 \text{ GeV}, \Delta\phi > (0.2 0.4)$
 - $H_{1,1}^{\text{PP}}/H_{4,1}^{\text{PP}} > (0.2 0.35), \Delta_{\text{QCD}} > 0,$
 - \rightarrow First use of the RJR technique at the LHC!
- **30 signal regions between the** *M*_{eff} **and RJR analyses:**
 - See backup slides for details!

Control regions (CR) establish backgrounds in assoc. signal regions (SR)

- $Z(\rightarrow \nu\nu)$ +jets: from γ + jets in CR γ
- Multi-jets: from multijets in CRQ
- W(→ ℓν)+jets: from W+jets in CRW
 tī: from semileptonic tī in CRT

Validation regions (VR) are used to confirm the predictions from the CRs.

D. W. Miller (EFI, Chicago)

Targeting zero-lepton (OL) final states with 2-6 jets Just released for ICHEP! ATLAS-CONF-2016-078

- Two simultaneous strategies: Large *M*_{eff} and Recursive Jigsaw (RJR):
 - $M_{\text{eff}} > (0.8 2.2) \text{ TeV}, N_{\text{jet}} > (2 6), E_{\text{T}}^{\text{miss}} > 200, 500 \text{ GeV}, \Delta\phi > (0.2 0.4)$
 - $H_{1,1}^{\rm PP}/H_{4,1}^{\rm PP} > (0.2 0.35), \Delta_{\rm QCD} > 0,$
 - \rightarrow First use of the RJR technique at the LHC!
- 30 signal regions between the $M_{\rm eff}$ and RJR analyses:
 - See backup slides for details!

Control regions (CR) establish backgrounds in assoc. signal regions (SR)

- $Z(\rightarrow \nu\nu)$ +jets: from γ + jets in CR γ
- Multi-jets: from multijets in CRQ
- $W(\rightarrow \ell \nu)$ +jets: from W+jets in CRW
- $t\bar{t}$: from semileptonic $t\bar{t}$ in CRT

Validation regions (VR) are used to confirm the predictions from the CRs.

August 4, 2016 10 / 21

Targeting zero-lepton (OL) final states with 2-6 jets

- Two simultaneous strategies: Large *M*_{eff} and Recursive Jigsaw (RJR):
 - $M_{\text{eff}} > (0.8 2.2)$ TeV, $N_{\text{jet}} > (2 6)$, $E_{\text{T}}^{\text{miss}} > 200,500$ GeV, $\Delta \phi > (0.2 0.4)$
 - $H_{1,1}^{\rm PP}/H_{4,1}^{\rm PP} > (0.2 0.35), \Delta_{\rm QCD} > 0,$
 - \rightarrow First use of the RJR technique at the LHC!
- **30** signal regions between the *M*_{eff} and **RJR** analyses:
 - See backup slides for details!

Control region selection requirements for each region and analysis approach:

CR	SR background	CR process	CR selection	CR selection	
			(Meff-based)	(RJR-based)	
Meff/RJR-CRy	$Z(\rightarrow \nu \bar{\nu})$ +jets	γ+jets	Isolated photon	Isolated photon	
Meff/RJR-CRQ	Multi-jet	Multi-jet	SR with reversed requirements on	$\Delta_{QCD} < 0$	
			(i) $\Delta \phi$ (jet, E_T^{miss}) _{min} and (ii) $E_T^{\text{miss}}/m_{\text{eff}}(N_j)$	reversed requirement on	
			or $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$H_{1,1}^{PP}$ (RJR-S/G)	
				or $R_{\rm ISR} < 0.5 \ (\rm RJR-C)$	
Meff/RJR-CRW	$W(\rightarrow \ell \nu)$ +jets	$W(\rightarrow \ell \nu)$ +jets	$30 \text{ GeV} < m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 100 \text{ GeV}, b$ -veto		
Meff/RJR-CRT	$t\bar{t}(+EW)$ and single top	$t\bar{t} \rightarrow b\bar{b}qq'\ell\nu$	$30 \text{ GeV} < m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 100$	GeV, b-tag	

Results in OL final states with 2-6 jets: M_{eff} analysis Just released for ICHEP! ATLAS-CONF-2016-078

- Observe good agreement in most SRs
- Observe some deviations from the predictions up to approximately 2.5σ for the 4-jet and 6-jet regions with high M_{eff}

Targeted signal	$ ilde{g} ilde{g}, ilde{g} o q ar{q} ilde{\chi}_1^0$	$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}W\tilde{\chi}_1^0$
Requirement	Meff-4j-2200	Meff-6j-1800
$N_{jet} \ge$	4	6
$E_T^{miss}[GeV] >$	200	200
$p_{\rm T}(j_1) [{\rm GeV}] >$	200	200
$p_{\rm T}(j_4) [{\rm GeV}] >$	150	-
$p_{\rm T}(j_5) [{\rm GeV}] >$	-	-
$p_{\rm T}(j_6) [{\rm GeV}] >$	-	50
$ \eta(j_{1,,n}) <$	2.0	2.0
$\Delta \phi(\text{jet}_{1-3}, \vec{p_T}^{\text{miss}})_{\min} >$	0.4	0.4
$\Delta \phi(\text{jet}_{i>3}, \vec{p_T}^{\text{miss}})_{\min} >$	0.4	0.2
Aplanarity >	0.04	0.08
$E_{\rm T}^{\rm miss}/M_{\rm eff}(N_{\rm j}) >$	0.2	0.15
$M_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	2200	1800

Results in OL final states with 2-6 jets: RJR analysis Just released for ICHEP! ATLAS-CONF-2016-078

- Observe good agreement in most SRs
- Observe some deviations from the predictions in the gluino-targeted SRs
 - ... not independent with respect to $M_{\rm eff}$ analysis

Targeted signal	$ ilde{g} ilde{g}, ilde{g} ightarrow qar{q} ilde{\chi}_1^0$		
Requirement	RJR-G3a	RJR-G3b	
$H_{1,1}^{PP}/H_{4,1}^{PP} \ge$	0	.2	
$H_{\rm T~4,1}^{\rm PP}/H_{4,1}^{\rm PP} \ge$	0.	65	
$p_{\mathrm{PP, z}}^{\mathrm{lab}} / \left(p_{\mathrm{PP, z}}^{\mathrm{lab}} + H_{\mathrm{T4,1}}^{\mathrm{PP}} \right) \leq$	0	.6	
$\min\left(p_{j2 T i}^{PP}/H_{T 2,1 i}^{PP}\right) \geq$	0.	08	
$\max\left(H_{1,0}^{\text{Pi}}/H_{2,0}^{\text{Pi}}\right) \leq$	0.	98	
$\Delta_{\rm QCD}$ >		0	
$H_{1,1}^{PP} [GeV] >$	9	00	
$H_{\rm T~4,1}^{\rm PP}$ [GeV] >	2300	2800	

• Observe slight excesses in signal regions designed to be sensitive to gluino production with hadronic final state bosons

D. W. Miller (EFI, Chicago)

Searches for SUSY in fully hadronic final states

Search for multi-b jet final states with 4 b's, 0 leptons (Gbb) Just released for ICHEP! ATLAS-CONF-2016-052

		Variable	Signal region	Control region	Validation region
\tilde{g}		$p_{\mathrm{T}}^{\mathrm{jet}}$	> 70	> 70	> 70
\tilde{g}	Region A (Large mass splitting)	N _{b-jets}	≥ 3	≥ 3	≥ 3
p b		$E_{\mathrm{T}}^{\mathrm{miss}}$	> 450	> 350	> 450
0		$m_{ m eff}^{ m 4j}$	> 1900	> 1750	< 1900

(+ additional selections on m_T and leptons)

D. W. Miller (EFI, Chicago)

Searches for SUSY in fully hadronic final states

August 4, 2016 15 / 21

Search for multi-b jet final states with 4 tops, 0 leptons (Gtt) Just released for ICHEP! ATLAS-CONF-2016-052

(+ additional selections on m_T , m_T^{b-jets} , N_{jet} , and leptons)

D. W. Miller (EFI, Chicago)

Searches for SUSY in fully hadronic final states

August 4, 2016 16 / 21

Yields in all signal regions: 4b, 4 top OL (& 1L) Just released for ICHEP! ATLAS-CONF-2016-052

- No significant excess is found above the predicted background.
- The background is dominated by $t\bar{t}$ events in all signal regions.
- The subdominant contributions in the Gbb and Gtt 0-lepton signal regions are $Z(\rightarrow \nu\nu)$ +jets and $W(\rightarrow \ell\nu)$ +jets events

D. W. Miller (EFI, Chicago)

Results for the zero-lepton channel of gluino-mediated \tilde{t}/\tilde{b} 2015 paper released in May 2016 arXiv:1605.09318 (accepted in PRD)

- For each mass point, the combination of signal regions that leads to the best expected exclusion is chosen
- Exclude gluino masses up to $m_{\tilde{g}} \approx 1.85 \text{ TeV}$
- Significant improvement compared Run $1! \rightarrow 450$ GeV increase in sensitivity!
 - D. W. Miller (EFI, Chicago)

Large effective mass and boosted top-quark candidate event

Outline

Introduction to hadronic SUSY Searches at 13 TeV SUSY at 13 TeV

• Search strategies and observables employed

Two all-hadronic SUSY Searches at 13 TeV

- Zero-lepton final states with 2-6 jets
- Multi-*b* jet final states with (& 1 lepton)

3 Summary and Conclusions

Summary and Conclusions

ATLAS has a robust and broad effort devoted to searching for SUSY in fully hadronic final states, using new techniques, novel approaches to final state reconstruction, and a holistic perspective on using various classes of observables for these searches.

Summary and conclusions

- Completed the flagship $jets+E_T^{miss}$ search with the first 2016 data and significantly extended the Run 1 and 2015 sensitivity
- Implemented novel recursive jigsaw reconstruction technique for partitioning final state kinematics and constructing a dynamic and discriminating basis of event-level observables
- Completed the dedicated search for 4 *b* and 4 top SUSY processes using the **total jet mass observable**, and extended limits significantly

2016?

Thank you!

D. W. Miller (EFI, Chicago)

Backup slides and additional information

Outline

Backup slides and additional information

- Luminosity summary plots for 2016 pp data taking
- Reminder of the ATLAS reconstruction procedure
- Recursive Jigsaw Reconstruction Observables
- Signal region definitions for 0L final states with 2-6 jets
- Signal region definitions multi-b jet final states with 0 leptons

Backup slides and additional information

Additional Material

D. W. Miller (EFI, Chicago)

Backup slides and additional information

Outline

Backup slides and additional information

- Luminosity summary plots for 2016 pp data taking
- Reminder of the ATLAS reconstruction procedure
- Recursive Jigsaw Reconstruction Observables
- Signal region definitions for 0L final states with 2-6 jets
- Signal region definitions multi-b jet final states with 0 leptons

Luminosity summary plots for 2016 pp data taking

- Public luminosity results for Run 2
- Results related to ATLAS luminosity measurements in Run 2 are given.

Quick reminder of the foundations of jet reconstruction

- Measure calorimeter noise (arXiv:1510.03823)
 Build a seeded
- Build a seeded nearest-neighbor cluster using the noise estimates (including pile-up) to define a significance (E/σ)
- Obtain a set of 3D topo-clusters (potentially also calibrated to the hadronic scale)
- Use as input to calorimeter-based jet reconstruction

Of course, can also use tracks, truth particles!

D. W. Miller (EFI, Chicago)

4. Use as input for calo-jet reconstruction (fig from arXiv:1510.0582)

August 4, 2016 5 / 13

Recursive Jigsaw Reconstruction Observables (I)

To select signal events in models with squark-pair production, the following variables are used:

- $H_{1,1}^{\text{PP}} \rightarrow \text{scale variable, similar to } \vec{p_{\text{T}}}^{\text{miss}}$.
- $H_{T 2,1}^{PP} \rightarrow$ transverse scale variable, similar to effective mass, M_{eff} for squark-pair production signals with two-jet final states.
- $H_{1,1}^{PP}/H_{2,1}^{PP} \rightarrow$ provides additional information in testing the balance of the information provided by the two scale cuts, where in the denominator the $H_{2,1}^{PP}$ is no longer solely transverse. This provides a handle against imbalanced events where the large scale is dominated by a particular object $p_{\rm T}$ or by high $\vec{p_{\rm T}}^{\rm miss}$.
- $p_z^{\text{lab}}/(p_z^{\text{lab}} + H_{\text{T}2,1}^{\text{PP}}) \rightarrow \text{compares the }z\text{-momentum of the lab frame to the overall transverse scale variable considered. This variable tests for significant boost in the$ *z*direction.
- $p_{Tj2}^{PP}/H_{T2,1}^{PP} \rightarrow$ represents the fraction of the overall scale variable that is due to the second highest p_T jet (in the *PP* frame) in the event.

D. W. Miller (EFI, Chicago)

Recursive Jigsaw Reconstruction Observables (II)

For signal topologies with higher jet multiplicities, there is the option to exploit the internal structure of the hemispheres by using a decay tree with an additional decay. For gluino-pair production, the variables used by this search are:

- $H_{T4,1}^{PP} \rightarrow$ analogous to the transverse scale variable $H_{T2,1}^{PP}$ for the squark search but more appropriate for four-jet final states expected from gluino-pair production.
- $H_{1,1}^{\text{PP}}/H_{4,1}^{\text{PP}} \rightarrow \text{analogous to } H_{1,1}^{\text{PP}}/H_{2,1}^{\text{PP}}$ for the squark search.
- $H_{T 4,1}^{PP}/H_{4,1}^{PP} \rightarrow$ a measure of the fraction of the momentum that lies in the transverse plane.
- $p_z^{\text{lab}}/(p_z^{\text{lab}} + H_{\text{T}4,1}^{\text{PP}}) \rightarrow \text{analogous to } p_z^{\text{lab}}/(p_z^{\text{lab}} + H_{\text{T}2,1}^{\text{PP}})$ above.
- min $(p_{Tj2i}^{PP}/H_{T2,1i}^{PP}) \rightarrow$ represents the fraction of a hemisphere's overall scale due to the second highest p_T jet (in the *PP* frame) in each hemisphere. The minimum value between the two hemispheres is used.
- max $(H_{1,0}^{\mathbf{P}_i}/H_{2,0}^{\mathbf{P}_i}) \rightarrow$ testing balance of solely the jets momentum in a given hemisphere allows an additional handle against a small but pernicious subset of events.
- $|\frac{2}{3}\Delta\phi_{V,P}^{PP} \frac{1}{3}\cos\theta_P| \rightarrow \text{constructed from the difference between the azimuthal angle between the$ *V*and*P*frames, evaluated in the*PP* $frame and the polar angle of that parent particle. The difference between these two angular properties highlights events where the missing transverse momentum is imbalanced between hemispheres (e.g. semileptonic <math>t\bar{t}$ decays where the lepton is reconstructed as a jet). This variable exploits the fact that signal events tend to be more "spherical" to efficiently suppress these pernicious background sources.

Recursive Jigsaw Reconstruction Observables (III)

Assuming a distinct ISR boost, the model decay tree for ISR yields a slightly different set of variables:

- $|p_{\text{TS}}^{\text{ISR}}| \rightarrow$ the magnitude of the vector-summed transverse momenta of all ISR-associated jets evaluated in the CM frame.
- $R_{\rm ISR} \equiv \vec{p}_{\rm I}^{\rm CM} \cdot \hat{p}_{\rm TS}^{\rm CM} / p_{\rm TS}^{\rm CM} \rightarrow$ serves as a proxy for $m_{\chi}/m_{\rm p}$. \rightarrow This is the fraction of the boost of the *S* system that is carried by its invisible system *I*. As the $|p_{\rm TS}^{\rm ISR}|$ is increased it becomes increasingly hard for backgrounds to possess a large value in this ratio a feature exhibited by compressed signals.
- $M_{\rm TS} \rightarrow$ the transverse mass of the *S* system.
- N^V_{jet} → number of jets assigned to the visible system (V) and not associated with the ISR system.
- $\Delta \phi_{\text{ISR,I}} \rightarrow$ This is the opening angle between the ISR system and the invisible system in the lab frame.

Signal region definitions for M_{eff} search Just released for ICHEP! ATLAS-CONF-2016-078

Targeted signal	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$					Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow$	$q\bar{q}W\tilde{\chi}_{1}^{0}$	
Baquirament	Signal Region					Requirement	Signal Region		
Kequitement	Meff-2j-800	Meff-2j-1200	Meff-2j-1600	Meff-2j-2000	Meff-3j-1200	Requirement	Meff-6j-1800	Meff-6j-2200	
$E_{\rm T}^{\rm miss}$ [GeV] >			250			$E_{\rm T}^{\rm miss}$ [GeV] >	2:	50	
$p_T(j_1) [GeV] >$	200	200 250			600	$p_{\rm T}(j_1) [{\rm GeV}] >$	20	00	
$p_T(j_2) [GeV] >$	200		250			$p_T(j_6) [GeV] >$	50	100	
$p_{T}(j_{3}) [GeV] >$			-		50	$ \eta(j_{1,,6}) <$	2.0	-	
$ \eta(j_{1,2}) <$	0.8		1.2		-	$\Delta \phi(jet_{1,2,(3)}, E_T^{miss})_{min} >$	0	.4	
$\Delta \phi(\text{jet}_{1,2,(3)}, E_T^{\text{miss}})_{\text{min}} >$. ().8		0.4	$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$	0	.2	
$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$	0.4				0.2	Aplanarity >	0.08		
$E_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}} [{\rm GeV^{1/2}}] >$	14	16	18	20	16	$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	0.2	0.15	
meff(incl.) [GeV] >	800	1200	1600	2000	1200	$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1800	2200	

Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$								
D	Signal Region								
Requirement	Meff-4j-1000	Meff-4j-1400	Meff-4j-1800	Meff-4j-2200	Meff-4j-2600	Meff-5j-1400			
$E_{\rm T}^{\rm miss}$ [GeV] >			2:	50					
$p_T(j_1) [GeV] >$			200			500			
$p_T(j_4) [GeV] >$		100		1:	50	50			
$p_T(j_5) [GeV] >$			-			50			
$ \eta(j_{1,2,3,4}) <$	1.2		2.0			-			
$\Delta \phi(jet_{1,2,(3)}, E_T^{miss})_{min} >$			0	.4					
$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$			0.4			0.2			
Aplanarity >	0.04 -								
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	0.25 0.2					0.3			
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1400	1800	2200	2600	1400			

D. W. Miller (EFI, Chicago)

Signal region definitions for Recursive Jigsaw search Just released for ICHEP! ATLAS-CONF-2016-078

Targeted signal		$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$				Targeted signal	compressed spectra in $\tilde{q}\tilde{q}$ ($\tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$); $\tilde{g}\tilde{g}$ ($\tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0}$)				$\rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	
Requirement	Signal Region RIR-S1 RIR-S2 RIR-S3			Requirement		5	Signal Regio	n				
$H_{1,1}^{PP}/H_{2,1}^{PP} \ge$	0	.6	0.	55	0	.5	Requirement	RJR-C1	RJR-C2	RJR-C3	RJR-C4	RJR-C5
$H_{1,1}^{PP}/H_{2,1}^{PP} \le$	0.	95	0.	96	0.	.98	$R_{ISR} \ge$	0.9	0.85	0.8	0.75	0.70
$p_{PP, z}^{lab} / \left(p_{PP, z}^{lab} + H_{T2,1}^{PP} \right) \le$	0	.5	0.	55	0	.6	$\Delta \phi_{ISR, I} \ge$	3.1	3.07	2.95	2.95	2.95
$p_{j2,T}^{PP}/H_{T2,1}^{PP} \ge$	0.	.16	0.	15	0.	.13	$\Delta \phi(\text{jet}_{1,2}, E_T^{\text{miss}})_{\min} >$	-	-	-	0.4	0.4
Δ _{QCD} >			0.0	01			$M_{TS} [GeV] \ge$	100	100	200	500	500
	RJR-S1a	RJR-S1b	RJR-S2a	RJR-S2b	RJR-S3a	RJR-S3b	n CM [CaV] >	800	800	600	600	600
$H_{T2,1}^{PP}$ [GeV] >	1000	1200	1400	1600	1800	2000	p_{TS} [GeV] 2	000		000	000	000
$H_{1,1}^{PP}$ [GeV] >	10	000	14	00	16	500	$N_{jet}^{V} \ge$	1	1	2	2	3

Targeted signal		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$							
Paquiramant	Signal Region								
Kequirement	RJF	R-G1	RJF	R-G2	RJF	R-G3			
$H_{1,1}^{PP}/H_{4,1}^{PP} \ge$	0.	35	0.	25	0	.2			
$H_{T 4,1}^{PP}/H_{4,1}^{PP} \ge$	0	.8	0.	75	0.	65			
$p_{PP, z}^{lab} / (p_{PP, z}^{lab} + H_{T 4, l}^{PP}) \le$	0	.5	0.	55	0.6				
$\min \left(p_{j2 T i}^{PP} / H_{T 2,1 i}^{PP} \right) \ge$	0.	0.12		0.1		0.08			
$\max \left(H_{1, 0}^{Pi} / H_{2, 0}^{Pi} \right) \le$	0.	95	0.97		0.98				
$\left \frac{2}{3}\Delta\phi_{V,P}^{PP} - \frac{1}{3}\cos\theta_{p}\right \le$	0	.5	-						
$\Delta_{QCD} >$		0							
	RJR-G1a	RJR-G1b	RJR-G2a	RJR-G2b	RJR-G3a	RJR-G3b			
$H_{T4,1}^{PP}$ [GeV] >	1000 1200		1500	1900	2300	2800			
$H_{1,1}^{pp} [GeV] >$	6	00	8	00	900				

Signal regions for multi-b jet final states with OL Just released for ICHEP! ATLAS-CONF-2016-052

C	Criterion common to all Gbb regions: $N^{\text{jet}} \ge 4$					
	Variable	Signal region	Control region	Validation region		
	N ^{Candidate} Lepton	= 0	-	= 0		
Criteria common	N ^{Signal Lepton}	-	= 1	-		
same type	$\Delta \phi_{ m min}^{ m 4j}$	> 0.4	-	> 0.4		
	m_{T}	-	< 150	-		
	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 70	> 70	> 70		
Region A	N _{b-jets}	≥ 3	≥ 3	≥ 3		
(Large mass splitting)	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 450	> 350	> 450		
	$m_{ m eff}^{ m 4j}$	> 1900	> 1750	< 1900		
	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 30	> 30	> 30		
Region B	N _{b-jets}	≥ 4	≥ 4	≥ 4		
(Small mass splitting)	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 300	> 300	> 275		
	$m_{ m eff}^{ m 4j}$	> 1000	> 1000	< 1000		

D. W. Miller (EFI, Chicago)

Signal regions for multi-b jet final states with OL Just released for ICHEP! ATLAS-CONF-2016-052

Criteria common to all Gtt 0-lepton regions: $p_{\text{T}}^{\text{jet}} > 30 \text{ GeV}, N_{b\text{-jets}} \ge 3$								
	Variable	Signal region	Control region	VR1L	VR0L			
	N ^{Signal Lepton}	= 0	= 1	= 1	= 0			
Criteria common	$\Delta \phi_{\min}^{4j}$	> 0.4	-	-	> 0.4			
same type	$m_{\mathrm{T,min}}^{b\text{-jets}}$	> 80	-	> 80	> 80			
	m_{T}	-	< 150	< 150	-			
	Njet	≥ 8	≥ 7	≥ 7	≥ 6			
Region A	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 400	> 250	> 200	> 300			
(Large mass splitting)	$m_{\rm eff}^{\rm incl}$	> 2000	> 1750	> 1750	> 1300			
	M_J^{Σ}	> 200	> 200	> 200	< 200			
	Njet	≥ 8	≥ 7	≥ 7	≥ 7			
Region B (Small mass splitting)	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 400	> 400	> 325	$\in (300,400)$			
	$m_{ m eff}^{ m incl}$	> 1250	> 1250	> 1250	> 1200			

D. W. Miller (EFI, Chicago)

Signal regions for multi-b jet final states with OL Just released for ICHEP! ATLAS-CONF-2016-052

Criteria common to all Gtt 1-lepton regions: ≥ 1 signal lepton, $p_{\rm T}{}^{\rm jet} > 30~{\rm GeV}$						
	Variable	Signal region	Control region	$VR-m_T$	$VR-m^{b-jets}_{T,min}$	
	Njet	≥ 6	= 6	≥ 5	≥ 6	
Region A	N _{b-jets}	≥ 3	≥ 3	≥ 3	≥ 3	
splitting)	$m_{\rm T}$	> 200	< 200	> 200	< 200	
	$m_{\mathrm{T,min}}^{b\text{-jets}}$	> 120	-	-	> 120	
	$E_{\rm T}^{\rm miss}$	> 200	> 200	> 200	> 200	
	$m_{\rm eff}^{\rm incl}$	> 2000	> 1500	> 1350	> 1500	
	M_J^{Σ}	> 200	> 200	< 200	> 200	
Region B	Njet	≥ 6	= 6	≥ 5	≥ 6	
(Moderate mass	N _{b-jets}	≥ 3	≥ 3	≥ 3	≥ 3	
splitting)	$m_{\rm T}$	> 200	< 200	> 200	< 200	
	$m_{T,min}^{b-jets}$	> 120	-	-	> 120	
	$E_{\rm T}^{\rm miss}$	> 350	> 300	> 250	> 300	
	$m_{\rm eff}^{\rm incl}$	> 1500	> 1250	> 1100	> 1500	
	M_J^{Σ}	> 150	> 150	< 150	> 150	
Region C	Njet	≥ 6	= 6	≥ 6	≥ 6	
(Small mass	Nb-jets	≥ 4	≥ 4	≥ 3	≥ 4	
splitting)	$m_{\rm T}$	> 150	< 150	> 150	< 150	
	$m_{T,min}^{b-jets}$	> 80	-	< 80	> 80	
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200	> 200	> 200	> 200	
	mincl eff	> 500	> 500	> 500	> 500	

D. W. Miller (EFI, Chicago)