The Compatibility of LHC Data with a New Heavy Scalar

S.E. Von Buddenbrock, A. Cornell, N. Chakrabarty, D. Kar (dkar@cern.ch), M. Kumar, T. Mandal, B. Mellado, B. Mukhopadhyaya, R. Reed

Observations
Most Run 1 results matched Standard Model predictions, there were a number of small excesses: Higgs p_T spectrum, Di-Higgs rate:

[VV production ($V = W^\pm, Z$):

Top associated Higgs production:

The Model
These excesses can all explained by the existence of a Heavy Scalar, the Madala boson, produced through gluon fusion (arXiv:1506.00062, arXiv:1603.01208):

With the following decay modes:

- The intermediate scalar S can explain a large $H \rightarrow h\chi\chi$ branching ratio
- Phenomenologically interesting in the range $m_h < m_S < m_H - m_h$
- H can be identified as a part of a Two Higgs Doublet Model (2HDM)
- If H is the CP-even component of a 2HDM, we would expect more particles: A and H^\pm

Experimental Searches
- Tag the Higgs h using any channel
- Tag the Z boson by searching for di-lepton pairs
- Requirement on missing energy

There are two current experimental searches which do this:

- The $A \rightarrow Zh$ search channel: ATLAS and CMS search for A using the $h \rightarrow bb$ decay channel. The mass of Zh is used as a discriminant here.
- $Z \rightarrow E_T^{miss}$: the SUSY search, ATLAS and CMS searches for 2 same-flavour opposite-sign leptons, with missing energy.

Explaining the Excesses
- Heavy scalar decays to Higgs \Longrightarrow distorted Higgs p_T spectrum
- Di-Higgs production is enhanced through a resonance ($pp \rightarrow H \rightarrow hh$)
- Resonant production of VV pairs ($pp \rightarrow \rightarrow H \rightarrow VV$)
- Small $H \rightarrow VV$ branching fraction \Longrightarrow enhanced $pp \rightarrow tH$ cross section

A statistical combination is performed leaving the mass of this heavy scalar as a free parameter:

Illustrative Results