

JUNO Central Detector and its Calibration System

Qingmin Zhang (On behalf of JUNO Collaboration)

Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

1. JUNO Introduction

The Jiangmen Underground Neutrino Observatory (JUNO), which will be constructed at Kaiping, Jiangmen in South China, is designed to primarily determine the $m_{3^{2}}$ neutrino Mass Hierarchy by detecting reactor antineutrinos via inversed beta decay.

2. JUNO Central Detector

3. Calibration Systems

Goals SS Wall Source Materia White Teflon SS Tube Overall energy resolution: $3\%/\sqrt{E}$ **Radioactive source design** Energy nonlinearity: < 1% SS Pins Based on MC simulation, **Radioactive sources** energy bias is less than γ : ⁴⁰K, ⁵⁴Mn, ⁶⁰Co, ¹³⁷Cs 0.2% Deployment rope **e**⁺: ²²Na, ⁶⁸Ge **n:** ²⁴¹Am-Be, ²⁴¹Am- ¹³C or ²⁴¹Pu- ¹³C, ²⁵²Cf Spool drive Position Control Water Line **1-D:** Automatic Calibration Unit (ACU) for central axis scan ACU Side cable **2-D:** Cable Loop System (CLS) for one vertical plane scan + pulley CLS Guide Tube Calibration System(GTCS) for CD outer surface (ACU CLS and ROV can not reach CD boundary) **3-D:** Remotely Operated under-liquid-scintillator Vehicles ROV GTCS (**ROV**) for whole CD scan sourc

JUNO Central Detector, the main part of JUNO, is a 20 kton multi-purpose underground liquid scintillator (LS) detector, which has best resolution $\frac{3\%}{\sqrt{E}}$.

Electronics D Main Requirements for JUNO central detector

 \checkmark 20 kt high purity LS with high light yield and long attenuation length

- ✓ 17000 20" PMTs wih high Q.E.+
- 34000 3" PMTs
- ✓ High light yield: >= 1200 p.e. /MeV
- ✓ Background: minimization
- ✓ Structure: reliable no leakage
- ✓ Material: Long-term Compatibility with LS and pure water
- ✓ Long lifetime: >= 20 years

2.1 Liquid Scintillator

2.2 PMTs

20" PMTs with High QE

- ✓ 15k NNVT MCP-PMT: newly developed by Nor Night Vision Technology (NNVT), use for central detector and veto detector.
- ✓ 5k Hamamatsu R12860: use for central detector

Mixture of 20" and 3" **PMTs**

- **34,000 3" PMTs: an vital "aider" to 20" PMTs**
- **Can serve as a standalone calorimetry because of no** \checkmark saturation and better linearity in JUNO situation

2.3 Structure

th Characteristics	MCP-PMT	R12860
	(NNVT)	(Hamamatsu)
Detection Eff. (QE×CE*area) (%) 27%, >24%	27%, >24%
P/V of SPE	3.5, >2.8	3,>2.5
TTS on the top point (ns)	~12,<15	2.7,<3.5
Rise time/Fall time(ns)	R~5; F~12	R~5,<7; F~9,<12
Anode Dark count(Hz)	20k,<30k	10k,<50k
After Pulse Percentage(%)	1,<2	10,<15
Glass Radioactivity(ppb)	²³⁸ U:50 ²³² Th:50 ⁴⁰ K:20	²³⁸ U:400 ²³² Th:400 ⁴⁰ K:40

Challenges

- ✓ Water-proof potting
- ✓ PMT protection to avoid chained explosion
- ✓ Reliability of Integrated PMT: 20~30years under 40-meter-deep water
- ✓ Geomagnetism shielding

Investigation of position-dependent response effect

- ✓ Peak of full absorption spectrum is used for measurement.
- ✓ Spectrum fitted with Gaussian + Compton
- **D** Boundary Effect Sources
- ✓ Chimney
- ✓ Fasteners
- ✓ **PMT Distribution**

Preliminary correction using non-uniformity map from ACU+CLS+ GTCS

used for correction

• Key features **Acrylic sphere + SS truss**

- AS: Φ35.4m SSLS: Φ 40.1m
- ✓ Thickness of Acrylic: 120mm Acrylic panels(21/23 layers + top chimney+ bottom flange): ~260 pieces Connecting node: ~590
- Total Weight: 600 tons of acrylic and 600 tons of steel

FEA shows maximum stress of acrylic < 3.5Mpa (as required) when tensile load < 8.2 ton.

Key features of filling and overflow system: ✓ Automatically ✓ Monitor: liquid level, flow and acrylic stress ✓ Nitrogen sealing

Temperature control: 1°C

Seismic load: still need

liquid case.

 \rightarrow 20m³ LS volume change

more test to understand the