

Top Quark Mass Measurements at D0

Frédéric Déliot CEA/Irfu-Saclay

On behalf of the D0 collaboration

Why do we care about the top quark mass?

- The top quark is the heaviest elementary particle:
 - important parameter for vacuum stability
 - consistency of the SM (m_t, m_W, m_H)
 - importance in loop corrections

How to measure the top-quark mass?

direct measurements

- template method:
 compare an observable in data with MC generated with different masses
- matrix element method build an event probability based on the LO tt matrix element using the full kinematics of the event

- need to calibrate the method to correct for any potential biases
- for channel with at least one W decaying hadronically, can calibrate the jet energy scale (JES) constraining M_{ij} to M_W

indirect measurements

- less input from MC or different sensitivity to systematics but currently less precise than the direct ones
- extraction of a mass in a better defined renormalisation scheme in this talk: top quark mass from the tt cross section

The Tevatron and the D0 experiment

Top quark mass measurements

Many of these analysis techniques have been pioneered at Tevatron

I+jets matrix element top mass measurement

- The matrix element method in the lepton+jets channel:
 - maximize the probability for a set of events as a function of the top mass and overall jet energy scale factor

$$P_{\rm sig} = \underbrace{\frac{1}{\sigma_{\rm obs}^{tt}(m_t,k_{\rm JES})}} \int \sum d\sigma(\vec{y},m_t) d\vec{q}_1 d\vec{q}_2 \underbrace{f(\vec{q}_1)f(\vec{q}_2)} \times \underbrace{W(\vec{x},\vec{y};k_{\rm JES})}_{\text{transfer functions}} \\ \text{observed cross section} \\ \text{from the LO } q\overline{q} \rightarrow t\overline{t} \text{ matrix element} \\ \text{from reco x to gen y}$$

Contribution	e+jets			μ +jets		
$t\bar{t}$	918.1	±	3.6	824.9	±	3.5
Other backgrounds	97.8	\pm	0.5	79.2	\pm	0.9
W + hf	126.0	\pm	2.1	162.2	\pm	2.8
W+1f	77.9	\pm	2.1	101.0	\pm	2.9
Multijet	144.4	\pm	24.2	48.2	\pm	16.1
Expected	1364.1	±	24.7	1215.5	±	17.0
Observed	1502			1	286	

I+jets matrix element top mass result

PRL 113, 032002 (2014), PRD 91, 112003 (2015)

$$m_t = 174.98 \pm 0.58 \, (\text{stat} + \text{JES}) \pm 0.49 \, (\text{syst}) \, \text{GeV}$$
 $k_{\text{JES}} = 1$

m_t^{gen}-172.5 [GeV]

 $k_{\rm JES} = 1.025 \pm 0.005$

 $\Delta m_t/m_t = 0.43\%$

m^{gen}-172.5 [GeV]

I+jets matrix element systematics

check of the JES flavor response

$$R_{bq} = (p_T^{b_1} + p_T^{b_2})/(p_T^{j_1} + p_T^{j_2})$$

$$k_{\rm bJES} = 1.008 \pm 0.0195 \, ({\rm stat}) \, {}^{+0.037}_{-0.031} \, ({\rm syst})$$

consistent with unity

Source of uncertainty	Effect on m_t (GeV)
Signal and background modeling:	
Higher order corrections	+0.15
Initial/final state radiation	± 0.09
Hadronization and UE	+0.26
Color reconnection	+0.10
Multiple $p\bar{p}$ interactions	-0.06
Heavy flavor scale factor	± 0.06
b-jet modeling	+0.09
PDF uncertainty	± 0.11
$Detector\ modeling:$	
Residual jet energy scale	± 0.21
Flavor-dependent response to jets	± 0.16
b tagging	± 0.10
Trigger	± 0.01
Lepton momentum scale	± 0.01
Jet energy resolution	± 0.07
Jet ID efficiency	-0.01
Method:	
Modeling of multijet events	+0.04
Signal fraction	± 0.08
MC calibration	± 0.07
Total systematic uncertainty	± 0.49
Total statistical uncertainty	± 0.58
Total uncertainty	± 0.76

dilepton matrix element top mass measurement

- Dilepton matrix element method
 - same formula as for l+jets but no possible JES in-situ constraints
 - more integration because of the unconstraint kinematics

	$Z/\gamma^* + \text{jets}$	Diboson	Instr.	$tar{t}$	Total	Data
$e\mu$	117				$293.8^{+23.5}_{-17.7}$	346
ee	$13.8^{+2.1}_{-1.9}$				$105.5^{+10.3}_{-9.5}$	
$\mu\mu$	$10.6^{+1.3}_{-1.4}$	$1.7^{+0.4}_{-0.4}$	$0^{+0.05}_{-0.05}$	$76.0^{+6.2}_{-4.1}$	$88.3^{+6.7}_{-4.7}$	92
$\ell\ell$	$37.4^{+5.1}_{-4.9}$	$7.3^{+1.6}_{-1.6}$	$18.2^{+4.0}_{-4.0}$	$424.6_{-28.6}^{+37.8}$	$487.6_{-31.9}^{+40.5}$	545

dilepton matrix element top mass result

arXiv:1606.02814, accepted to PRD

$$m_t = 173.93 \pm 1.61 \; (\mathrm{stat}) \pm 0.88 \; (\mathrm{syst}) \; \mathrm{GeV}$$

 $\Delta m_t/m_t = 1.05\%$

use overall JES scale factor obtained in the lepton+jets analysis

Source	Uncertainty (GeV)	
Signal and background modeling:		
Higher order corrections	+0.16	
ISR/FSR	± 0.16	
Hadronization and UE	+0.31	
Color Reconnection	+0.15	
b-jet modelling	+0.21	
PDF uncertainty	± 0.20	
Heavy flavor	∓0.06	
$p_T(tar{t})$	+0.03	
Multiple $p\bar{p}$ interactions	-0.10	
Detector modeling:		
Residual jet energy scale	-0.20	
Uncertainty on $k_{\rm JES}$ factor	∓ 0.46	
Flavor dependent jet response	∓0.30	
Jet energy resolution	∓0.15	
Electron momentum scale	∓0.10	
Electron resolution	∓0.16	
Muon resolution	∓0.10	
b-tagging efficiency	∓0.28	
Trigger	± 0.06	
Jet ID	+0.08	
Method:		
MC calibration	± 0.03	
Instrumental background	± 0.07	
MC background	± 0.06	
Total systematic uncertainty	±0.88	
Total statistical uncertainty	± 1.61	
Total uncertainty	±1.84	

dilepton neutrino weighting top mass measurement

Dilepton neutrino weighting method

- sample the neutrino rapidities for given value of mt
- measure the agreement of the calculated and observed missing E_T components with a weight distribution for each event: $ω(m_t)$
- use the 2 first moments of the distribution $(\mu_{\omega}, \sigma_{\omega})$ in a 2D template fit

$$\omega = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=x,y} \exp \left(-\frac{(\cancel{E}_{T_{j,i}}^{\mathrm{calc}} - \cancel{E}_{T_{j}}^{\mathrm{obs}})^{2}}{2\sigma_{\cancel{E}_{T_{j}}^{u}}^{2}} \right)$$

dilepton neutrino weighting top mass result

Phys. Lett. B 752 18 (2016)

$$m_t = 173.32 \pm 1.36 ({
m stat}) \pm 0.85 ({
m syst}) \ {
m GeV}$$
 $\Delta m_t/m_t = 0.93\%$

use overall JES scale factor obtained in the lepton+jets analysis

- Combination of the 2 dilepton results
 - BLUE combination of the matrix element and neutrino weighting results

$$m_t = 173.50 \pm 1.31(\text{stat}) \pm 0.84(\text{syst}) \text{ GeV}$$

Source	σ_{m_t} [GeV]			
Jet energy calibration				
Absolute scale	∓ 0.47			
Flavor dependence	∓ 0.27			
Residual scale	$^{+0.36}_{-0.35}$			
b quark fragmentation	+0.10			
Object reconstruction				
Trigger	-0.06			
Electron p_T resolution	± 0.01			
Muon p_T resolution	∓ 0.03			
Electron energy scale	± 0.01			
Muon p_T scale	± 0.01			
Jet resolution	∓ 0.12			
Jet identification	+0.03			
b tagging	∓ 0.19			
Signal modeling				
Higher-order effects	-0.33			
$\overline{\mathrm{ISR}}/\overline{\mathrm{FSR}}$	± 0.15			
$p_T(\dot{t}ar{t})$	-0.07			
Hadronization	-0.11			
Color reconnection	-0.22			
Multiple $p\bar{p}$ interactions	-0.06			
PDF uncertainty	± 0.08			
Background modeling				
Signal fraction	± 0.01			
Heavy-flavor scale factor	± 0.04			
Method				
Template statistics	± 0.18			
Calibration	± 0.07			
Total systematic uncertainty	± 0.85			

new D0 top mass combination

D0 Note 6485

- update since previous 2011 result
 - new lepton+jets and dilepton measurements

$$174.95 \pm 0.40 \, ({
m stat}) \pm 0.64 \, ({
m syst}) \, {
m GeV}$$
 $\chi^2/{
m ndof} = 2.5/3, \, {
m prob} = 47 \, \%$

	D0 Run I		D0 Rı	ın II
	$\ell + \mathrm{jets}$	$\ell\ell'$	$\ell + \mathrm{jets}$	$\ell\ell'$
Pull	0.98	-0.51	0.63	-1.06
Weight	0.00	-0.00	0.96	0.03

	Run I		Run II	
	$\ell + \mathrm{jets}$	$\ell\ell'$	$\ell + \text{jets}$	$\ell\ell'$
In situ light-jet calibration (iJES)			×	×
Response to $b/q/g$ jets (aJES)	О	o	×	×
Model for b jets (bJES)	×	$ \times $	×	×
Out-of-cone correction (cJES)	×	\times	×	×
Light-jet response (dJES)	О	o	×	×
Lepton modeling (LepPt)	О	o	×	×
Signal modeling (Signal)	×	$ \times $	×	×
Jet modeling(DetMod)	×	$ \times $	×	×
b-tag modeling (b -tag)	О	o	×	×
Background from theory (BGMC)	×	o	×	o
Background based on data (BGData)				
Calibration method (Method)				
Offset (UN/MI)	×	\times		
Multiple interactions model (MHI)	o	o	×	×
Statistical				

o,x: 100% correlated o not correlated with x

new Tevatron top mass combination

Tevatron combined values (GeV/c^2)

174.30

- update since previous 2014 result
 - new D0 dilepton measurement
 - published CDF all-jets measurement

$$m_{\rm t} = 174.30 \pm 0.35 \, ({\rm stat}) \pm 0.54 \, ({\rm syst}) \, {\rm GeV}$$

$$\Delta m_t/m_t = 0.37\%$$

$$\chi^2 = 10.8/11$$
, prob = 46%

$M_{ m t}$	174.30			
In situ light-jet calibration (iJES)	0.31			
Response to $b/q/g$ jets (aJES)	0.11			
Model for b-jets (bJES)	0.10			
Out-of-cone correction (cJES)	0.03			
Light-jet response (1) (rJES)	0.05			
Light-jet response (2) (dJES)	0.14			
Lepton modeling (LepPt)	0.01			
Signal modeling (Signal)	0.36			
Jet modeling (DetMod)	0.05			
b-tag modeling (b-tag)	0.07			
Background from theory (BGMC)	0.04			
Background based on data (BGData)	0.07			
Calibration method (Method)	0.07			
Offset (UN/MI)	0.00			
Multiple interactions model (MHI)	0.06			
Systematic uncertainty (syst)	0.54			
Statistical uncertainty (stat)	0.35			
Total uncertainty	0.65			
,9				
ats CT rulet wilds				
of Hall lepton lepton lepton appoint lets ton the	ilets .			
Background from theory (BGMC) Background based on data (BGData) O.07 Calibration method (Method) Offset (UN/MI) O.00 Multiple interactions model (MHI) Systematic uncertainty (syst) O.54 Statistical uncertainty (stat) Total uncertainty O.65 Cornlability O.7 Cornlabi				
Dr. CD. CD. CD. Day Day CL),			
Analysis				
	In situ light-jet calibration (iJES) Response to $b/q/g$ jets (aJES) Model for b -jets (bJES) Out-of-cone correction (cJES) Light-jet response (1) (rJES) Light-jet response (2) (dJES) Lepton modeling (LepPt) Signal modeling (Signal) Jet modeling (DetMod) b -tag modeling (b -tag) Background from theory (BGMC) Background based on data (BGData) Calibration method (Method) Offset (UN/MI) Multiple interactions model (MHI) Systematic uncertainty (syst) Statistical uncertainty Total uncertainty COLIMITERS (COLIMITERS (

Mass of the Top Quark

arXiv:1608.01881, D0 Note 6486, CDF Note 11204

top quark mass from the tt cross section

arXiv:1605.06168, submitted to PRD

Method

- compare the experimental tt cross section measurement with the theory computation (depend differently on the top quark mass)
- cross section vs m_t parametrized with (third order polynomial)/m_t⁴
 - * theoretical cross section computed at NNLO with top++
 - * experimental ljets+dilepton with 9.7 fb⁻¹

$$\sigma_{t\bar{t}} = 7.26 \pm 0.13 \, (\text{stat.}) \, ^{+0.57}_{-0.50} \, (\text{syst.}) \, \, \text{pb}$$

see talk from Andreas Jung on Thursday August 4th

Advantage/Drawback

- extract the top quark mass in a well defined renormalization scheme (the one used in the theory computation: here the pole mass)
- less precise than direct measurements

$$L(m_t) = \int f_{\mathrm{exp}}(\sigma|m_t) \; [f_{\mathrm{scale}}(\sigma|m_t) \otimes f_{\mathrm{PDF}}(\sigma|m_t)] \; d\sigma.$$
gaussian flat gaussian

$$m_t = 172.8 \pm 1.1 \text{ (theo.)} ^{+3.3}_{-3.1} \text{ (exp.)} \text{ GeV}$$

 $m_t = 172.8^{+3.4}_{-3.2} \text{ (tot.)} \text{ GeV}$

$$\Delta m_t/m_t = 1.9\%$$

Conclusion

- D0 recently published dilepton top quark mass measurements with the full dataset
 - matrix element result: $173.93 \pm 1.61 \; (\mathrm{stat}) \pm 0.88 \; (\mathrm{syst}) \; \mathrm{GeV}$ $\Delta m_t/m_t = 1.05\%$
 - neutrino weighting result: $173.32 \pm 1.36 (\mathrm{stat}) \pm 0.85 (\mathrm{syst}) \; \mathrm{GeV}$ $\Delta m_t/m_t = 0.93\%$
- update combinations of direct top quark mass measurements:
 - new D0 combination: $174.95 \pm 0.40 \, (\mathrm{stat}) \pm 0.64 \, (\mathrm{syst}) \, \mathrm{GeV}$ $\Delta m_t/m_t = 0.43\%$
 - new Tevatron combination: $174.30 \pm 0.35 \, (\mathrm{stat}) \pm 0.54 \, (\mathrm{syst}) \, \mathrm{GeV}$ $\Delta m_t/m_t = 0.37\%$
- D0 measurement from the $t\bar{t}$ cross section: $172.8^{+3.4}_{-3.2}$ (tot.) GeV $\Delta m_t/m_t = 1.9\%$

