CP violation in the three-body B^{\pm} phase-space

Jorge Alvarenga Nogueira

Instituto Tecnológico de Aeronáutica São José dos Campos, Brazil jhan@ita.br

Supervisor: Tobias Frederico (ITA, Brazil)

Collaborators:

Ignacio Bediaga (CBPF, Brazil), Odilon Lourenço (UFRJ, Brazil), Patrícia Magalhães (CBPF, Brazil)

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

CP noninvariance in charged decays

- > CPV: Different decay rates for particle and antiparticle
- Charged systems: First mechanism to CPV by BSS
 - No CPV at tree level Need to go beyond first Born approximation
 - Absorption from loop-diagrams is needed

Phys. Rev. Lett. 43, 242 (1979)

- QCD: "penguin" diagrams with timelike gluon transition
- Figure Writing the decay amplitude in a general form: $\mathcal{M} = \mathcal{D} (i/2)\mathcal{A}$

$$a_{\mathrm{CP}} = \Gamma (\mathrm{i} \to \mathrm{f}) - \Gamma (\bar{\mathrm{i}} \to \bar{\mathrm{f}}) \alpha \operatorname{Im}(\mathcal{D}^*\mathcal{A})$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Basic ingredients to CPV at quark level

> Schematically we can write as an example the $b \rightarrow s$ amplitude as:

$$\mathcal{M}_{b\to s} = v_u A_u + v_c A_c + v_t A_t \equiv v_u \Delta_{ut} + v_c \Delta_{ct}$$

> The asymmetry for this amlitude is:

$$a_{CP} \propto Im(v_u^* v_c) / Im(\Delta_{ut}^* \Delta_{ct})$$

- > This equation shows that we need basically two ingredients to have CPV:
 - 1) different weak CP violating phases and
 - 2) absorptive part coming from a loop diagram (hard FSI's);
- Additional terms with respect to CPT;

J.M. Gérard and W.S. Hou, Phys. Rev. Lett. 62, 855 (1989)

FIG. 2. The extra $O(\alpha_s^2)$ graph needed to satisfy the *CPT* theorem at the $O(\hbar^2)$, $O(\alpha_s^2)$ level. Only the absorptive part, i.e., the cut graph, of the vacuum bubble is needed.

Soft final state interactions

- Develop a formalism based on CPT invariance and Unitarity;
 - Hadronic FSI replace the absorptive part of the penguin graph;
 - Soft final state interactions do not disappear for large m_b;
 - Soft FSI should have an important effect for CPV;
- Meson-meson inelastic scattering at 5 GeV:
 - Important strong phase effect in B decays;
 - Depends on how probable the state is as a final state;
 - L. Wolfenstein, Phys. Rev. D 43, 151 (1991)
 - J. F. Donoghue, E. Golowich, A. A. Petrov, and J. M. Soares, Phys. Rev. Lett. 77, 11 (1996))
 - M. Suzuki and L. Wolfenstein, Phys. Rev. D 60, 074019 (1999)

Experimental facts

- Significant part of the observed CPV distribution is located in a region where hadronic channels are strongly coupled;
- Events concentrated at low invariant mass;
 - Huge phase-space available;
- Reasonable assumptions:
 - 1) Final states factorize in a two body interacting system plus a bachelor;
 - 2) Rescattering effects in three-body B decays happens in 3 → 3 channels;
- D. Cohen, D. S. Ayres, R. Diebold, S. L. Kramer, A. J. Pawlicki, and A. B. Wicklund, Phys. Rev. D 22, 2595(1980).
- R. Aaiji et al. (LHCb Collaboration), Phys. Rev. D 90, 112004 (2014).

Model asymmetry

Split the S-matrix in two parts

$$S = S_0 + S_1,$$

where S_0 is the diagonal part with the elastic scattering and S_1 is perturbatively treated as the first order inelastic transition;

> Factorizes the short-range and long-range contributions in the decay amplitude:

$$\mathcal{A}_{\lambda LO}^{\pm} = A_{0\lambda} + e^{\pm i\gamma} B_{0\lambda} + i \sum_{\lambda'} t_{\lambda \lambda'} (A_{0\lambda'} + e^{\pm i\gamma} B_{0\lambda'})$$

$$\Delta \Gamma_{\lambda} = |A_{\lambda}^{-}|^{2} - |A_{\lambda}^{+}|^{2} = \Gamma (h \to \lambda) - \Gamma (\overline{h} \to \overline{\lambda})$$

$$\Delta \Gamma_{\lambda} = 4 (\sin \gamma) Im [B_{0\lambda}^{*} A_{0\lambda} + i \sum_{\lambda'} (B_{0\lambda}^{*} t_{\lambda \lambda'} A_{0\lambda'} - B_{0\lambda'}^{*} t_{\lambda \lambda'}^{*} A_{0\lambda'})]$$

> Channels coupled by strong interactions implies $\Delta\Gamma_{\alpha} = -\Delta\Gamma_{\beta}$ > I. Bediaga, T. Frederico, and O. Lourenço, Phys. Rev. D 89, 094013 (2014).

S and P-wave resonant interferences

- > Two resonant intermediate states, with different weak phases, share the same kinematical region and hadronic final state;
- > CP asymmetry from S and P wave interference in same hadronic final state.
 - Resonant interferences ($\rho(770)$ and $f_0(980)$ resonances) + hadronic inelastic rescattering

 $\mathcal{A}_{0\lambda}^{\pm} = A_0^{\rho} F_0^{BW} k(s) \cos \theta + A_0^{f0} F_{f0}^{BW} + A_0^{NR},$

where
$$A_0^i = a_0^i + b_0^i e^{\pm i\gamma} (i = \rho, f_0, NR)$$

S-matrix: $S_{\lambda,\lambda'} = \delta_{\lambda,\lambda'} + i t_{\lambda,\lambda'}, t_{\pi\pi\to KK} = \sqrt{1-\eta^2} (s) e^{i(\delta KK + \delta \pi\pi)}$ (using $\delta_{KK} \approx \delta_{\pi\pi}$)

$$\Delta\Gamma_{\lambda} = \mathcal{B}\sqrt{1-\eta^{2}} (s) \cos[2\delta_{\pi\pi}(s)] + |F_{\rho}^{BW}(s)|^{2} k(s) \cos\theta \{\mathcal{D}(m_{\rho}^{2} - s) + \mathcal{E}m_{\rho}\Gamma_{\rho}(s)\} +$$

$$\mathcal{G}|F_{\rho}^{BW}(s)|^{2} |F_{f0}^{BW}(s)|^{2} k(s) \cos\theta [(m_{\rho}^{2} - s) m_{f0}\Gamma_{f0}(s) + m_{\rho}\Gamma_{\rho}(s) (m_{f0}^{2} - s)]$$

- I. Bediaga, T. Frederico, and O. Lourenço, Phys. Rev. D 89, 094013 (2014).
- J.H.A.N., I. Bediaga, A.B.R. Cavalcante, T. Frederico, O. Lourenço. Phys.Rev. D 92, 054010 (2015)
- I.B., I.I. Bigi, A. Gomes, G. Guerrer, J. Miranda and A.C. Dos Reis-Phys. Rev. D80, 096006 (2009)
 - > J.R. Pelaez and F.J. Ynduráin, Phys. Rev. D 71, 074016 (2005)

Fitting the data

- > J.H.A.N., I. Bediaga, A.B.R. Cavalcante, T. Frederico, O. Lourenço, Phys.: Conf. Ser. 706 042010 (2016)
- Same study was done for $B^{\mp} \to K^{\mp} \pi^{+} \pi^{-}$ (obtaining $B^{\mp} \to K^{\mp} K^{+} K^{-}$ as output) in J.H.A.N., I. Bediaga, A.B.R. Cavalcante, T. Frederico, O. Lourenço. Phys.Rev. D 92, 054010 (2015)

High mass CP distribution

- > Involving two-body coupling between light mesons (PP') and heavy mesons (double charm DD');
 - P and P' can be kaon or pion;

CP asymmetry in the high mass region

3

R. Aaiji et al. (LHCb Collaboration), Phys. Rev. D 90, 112004 (2014). New LHCb results: available at https://cds.cern.ch/record/1751517?ln=en

CP asymmetry in the high mass region

- Three light pseudoscalar mesons can couple with channels like $D\overline{D}$ h, h = K, π ;
 - Rescattering can contribute to CPV in regions of large two-body invariant mass above the DD threshold;
- > Final state interactions in hadronic B decays involving transitions from heavy to light mesons in the literature;
- \rightarrow DD \rightarrow K π rescattering computed within chiral Lagrangian based models;
- > Or parametrized using an effective expansion for the S-matrix;
- Branching ratio to double charm channels is bigger than to light mesons channels;
 - Even if the coupling is small, the BR is a factor of 10-100 bigger;
 - H.-Y. Cheng, C.-K. Chua, and A. Soni, Phys. Rev. D 71, 014030 (2005).
 - > J.A. Oller, E. Oset, Phys. Rev. D 60, 074023 (1999).
 - D. Gamermann, E. Oset, D. Strottman and M. J. Vicente Vacas, Phys. Rev. D 76, 074016 (2007).

CP asymmetry in the high mass region

- \rightarrow Preliminary result (using $t_{K\pi \rightarrow DDs}$ from chiral
- lagrangian model):

> Two-channel unitary S-matrix parametrization:

•
$$|S_{LL\to HH}|^2 = \sqrt{1-\eta^2} (s) = \Lambda (s/s_{th}-1)^{1/2}/(s/s_{th})^{2.5}$$

Interty S-matrix parametrization:
$$-400 = \frac{1}{\sqrt{1-\eta^2}(s)} = \Lambda (s/s_{th}-1)^{1/2}/(s/s_{th})^{2.5}$$
 $m_{K^+\pi^-}(GeV)$ $M_{K^+\pi^-}(GeV)$ $M_{K^+\pi^-}(GeV)$ $M_{K^+\pi^-}(GeV)$

 $B^{\mp} \rightarrow K^{\mp} \pi^{+} \pi^{-}$

100

o - 200 - A - 200

 λ =LL channel with a pole above the HH threshould:

$$k \cot \delta_{LL} = -c/(1-k_{LL}/k_{0LL}), \qquad k_{0LL} = (s_0 - s_{th LL})^{1/2}/2$$

 λ =HH channel with a virtual bound state: k cot δ_{uu} = -1/a

Our parametrization agrees with this result.

|S| parametrization similar to the one in J.R. Pelaez and F.J. Ynduráin, Phys. Rev. D 71, 074016 (2005)

Summary and Outlook

- > CPT must be a practical constraint in the analisys of the three-body B meson decays;
- Formalism is based on CPT invariance and Unitarity;
- Soft FSI is explicitly factorized and shows to be essential in our study;
- > The B meson phase space presents resonant interterferences with particular features;
- The decay channels $B^{\mp} \to \pi^{\mp} \pi^{+} \pi^{-}$ and $B^{\mp} \to \pi^{\mp} K^{+} K^{-}$ (also $B^{\mp} \to K^{\mp} \pi^{+} \pi^{-}$ and $B^{\mp} \to K^{\mp} K^{+} K^{-}$) presents asymmetries that seems to be related by the CPT constraint;
- > PP \rightarrow HH (P = π , K and H = D, D_s) scattering seems to be related with the high mass CP distribution;
- Understand hadron-hadron scattering bellow 5 GeV using CPV data;
- Next steps:
 - Include the three-body rescattering effects with the spectator meson;
 - Address the quark-level processes as source amplitudes for the hadronic rescattering;

Thank you!