Enhancement of Wino Dark Matter Annihilation through the Radiative Formation of Bound States

Evan Johnson

The Ohio State University

in collaboration with Eric Braaten and Hong Zhang

Outline of this talk

- Wino WIMP dark matter and annihilation
 - Direct wino-pair annihilation
 - Wino bound state production and subsequent annihilation
 - New mechanism for monochromatic gamma ray signal
- Nonrelativistic Effective Field Theory
- Zero-Range Effective Field Theory
- Wino bound state formation by two photon transition

Wino WIMP dark matter

- Extend the Standard Model to include one electroweak $SU(2) \times U(1)$ multiplet:
 - Triplet under SU(2) with zero hypercharge

$$\tilde{w} = \begin{pmatrix} \tilde{w}^+ & \tilde{w}^0 & \tilde{w}^- \end{pmatrix}$$

- Or, the MSSM in the region of parameters where the Lightest Supersymmetric Particle (LSP) is a wino-like neutralino
 - Wino: SUSY partner of the W boson
- Wino masses: neutral wino $M\sim$ few TeV, charged winos $M+\delta$
 - Electroweak radiative corrections give $\,\delta=170\,$ MeV and varies very little with M
- The neutral wino is the WIMP dark matter candidate
 - $M>1~{\rm TeV}$ for the relic density to be compatible with observed dark matter density

Wino interactions and nonperturbative effects

 A pair of neutral winos can annihilate into a pair of electroweak gauge bosons

$$\begin{array}{c} \tilde{w}^0 \tilde{w}^0 \to \gamma \gamma \\ \to \gamma Z^0 \end{array} \right\} \text{Monochromatic } \gamma \text{-ray signal}$$

$$\begin{array}{c} \tilde{w}^0 \tilde{w}^0 \to Z^0 Z^0 \\ \to W^+ W^- \end{array} \right\} \text{Continuous } \gamma \text{-ray and positron signal}$$

• Leading-order cross-section for $\tilde{w}^0 \tilde{w}^0 \to \gamma \gamma$:

- Exceeds unitarity bound $\sigma_{\rm ann} v < 4\pi/vM^2$ for sufficiently large M
 - Higher-order diagrams must be included in the cross-section

Wino interactions and nonperturbative effects

• Transitions between wino pairs, $\tilde{w}^0\tilde{w}^0$ and $\tilde{w}^+\tilde{w}^-$, involve exchange of EW gauge bosons:

$$\begin{array}{c}
\tilde{w}^0 \tilde{w}^0 \\
\text{or} \\
\tilde{w}^+ \tilde{w}^-
\end{array}$$

- The ladder diagrams must be summed to all orders
 - Each 'rung' of the ladder gives a factor of $lpha_2 M/m_W$
 - For large M , $\alpha_2 M \sim m_W$
 - The cross sections for $\,\tilde{w}^0\tilde{w}^0\to\gamma\gamma\,,\,\gamma Z\,,\,ZZ\,,\,WW\,$ receive large corrections: "Sommerfeld Enhancement"
- Difficult to calculate in the fundamental field theory
- Calculate with Nonrelativistic Effective Field Theory

Nonrelativistic Effective Field Theory (NREFT)

- Ladder diagrams from exchange of electroweak gauge bosons between a pair of winos can be summed to all orders by solving the Schrödinger equation
 - Neutral wino pairs and charged wino pairs are coupled channels interacting through the potential

$$V(r) = \begin{pmatrix} 0 & -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} \\ -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} & 2\delta - \frac{\alpha}{r} - \alpha_2 \cos^2 \theta_W \frac{e^{-m_Z r}}{r} \end{pmatrix} \begin{array}{c|c} \text{Channel Threshold Energy} \\ \hline \tilde{w}^0 \tilde{w}^0 & 0 \\ \tilde{w}^+ \tilde{w}^- & 2\delta \end{array}$$

- Sequence of critical masses where the neutral winos form a zero-energy resonance:
 - Resonance near the neutral wino scattering threshold: "Resonance Enhancement" or "Sommerfeld Enhancement"

Wino bound states

- There are critical values of the wino mass where a pair of neutral winos form a zero-energy resonance
 - ullet Critical masses are determined by the mass splitting δ and electroweak parameters
 - For $\delta=170$ MeV, the first critical mass is $M_*=2.4$ TeV
- When M is above M_* , the resonance is a bound state, denoted $(\tilde{w}\tilde{w})$

$$M \gtrsim 2.4 \text{ TeV}$$

$$2M$$

$$E_{\text{bound state}}$$

$$2M$$

$$E_{\text{bound state}}$$

$$2M$$

$$0 \tilde{w}^{+} \tilde{w}^{-}$$

$$2\delta (340 \text{ MeV})$$

$$\tilde{w}^{0} \tilde{w}^{0}$$

$$(\tilde{w} \tilde{w})$$

New mechanism for monochromatic gamma ray signal

Formation of bound state in neutral wino scattering through radiative transition

$$\tilde{w}^0 \tilde{w}^0 \rightarrow (\tilde{w}\tilde{w}) + \text{soft photons}$$

followed by annihilation of bound state into two hard photons

$$(\tilde{w}\tilde{w}) \rightarrow \gamma \gamma$$

- Annihilation rate = bound state production rate
 - Wino bound state is unstable and decays with probability one

Production of wino-pair bound state

- To conserve energy, the wino pair must radiate photons
 - Single-photon emission: forbidden by parity
 - Double-photon emission: allowed

- Extremely difficult to calculate using the Nonrelativistic Effective Field Theory
- Calculate with Zero-Range Effective Field Theory

Kinetic Lagrangian for wino fields:

$$\mathcal{L}_{\text{kinetic}} = w_0^{\dagger} \left(i \partial_0 + \frac{\nabla^2}{2M} \right) w_0 + \sum_{\pm} w_{\pm}^{\dagger} \left(i D_0 + \frac{D^2}{2M} - \delta \right) w_{\pm}$$

- EM covariant derivative for charged winos: $D_0 w_{\pm} = (\partial_0 \pm ieA_0)w_{\pm}$, $\mathbf{D}w_{\pm} = (\mathbf{\nabla} \mp ie\mathbf{A})w_{\pm}$
- Propagators for wino fields: $\tilde{w}^0 \tilde{w}^- \rightarrow \tilde{w}^+ \tilde{w}^+$
- Photon emission vertices:
- Interaction Lagrangian for zero-range interactions between winos

$$\mathcal{L}_{\text{zero-range}} = -\frac{1}{4}\lambda_{00}(w_0^{\dagger}w_0)^2 - \lambda_{11}(w_+^{\dagger}w_+)(w_-^{\dagger}w_-) \\ -\frac{1}{2}\lambda_{01}\left[(w_+^{\dagger}w_0)(w_-^{\dagger}w_0) + (w_0^{\dagger}w_+)(w_0^{\dagger}w_-)\right]$$

Zero-range vertices:

Wino pairs interact through local, zero-range contact interactions

- Three scattering parameters with units of momentum: $\gamma_{00}, \gamma_{01}, \gamma_{11}$
- ullet Other parameters: wino mass M, energy gap δ , EM coupling lpha
- Contact interactions must be treated nonperturbatively by summing bubble diagrams to all orders

 Calculate scattering amplitudes analytically by solving the coupledchannel Lippmann-Schwinger integral equations

ullet Scattering amplitude for neutral-wino elastic scattering with center-of-mass energy E

$$f_{00}(k) = \left(-\gamma_{00} - ik - \gamma_{01}^2 \left[-\gamma_{11} + \sqrt{2M\delta - k^2}\right]^{-1}\right)^{-1}$$
 Relative momentum $k = \sqrt{ME}$

- Zero energy limit: $f_{00}(k \to 0) \to -a_0$
- Neutral wino scattering length: $a_0 = (\gamma_{00} \gamma_{01}^2/(\gamma_{11} \sqrt{2M\delta}))^{-1}$
- The scattering length diverges at the critical mass $a_0(M_*) = \pm \infty$
- For $M>M_*$, bound state with energy $E=-\gamma^2/M$ where binding γ momentum satisfies

$$\gamma = \gamma_{00} - \gamma_{01}^2 (\gamma_{11} - \sqrt{2M\delta + \gamma^2})^{-1}$$

NREFT to Zero-Range EFT

• Determine three scattering parameters $\gamma_{00}, \gamma_{01}, \gamma_{11}$ by fitting neutral-wino elastic scattering amplitude

$$f_{00}(k) = \frac{1}{k \cot \delta_0(k) - ik}$$

- Neutral-wino S-wave phase shift: $\delta_0(k)$
- Calculate $\delta_0(k)$ by solving Schrödinger's equation in the NREFT
- Fit energy dependence to analytic result from Zero-Range EFT:

$$k \cot \delta_0(k) = -\gamma_{00} - \gamma_{01}^2 \left[-\gamma_{11} + \sqrt{2M\delta - k^2} \right]^{-1}$$

• Fit results:
$$\gamma_{00} = -177~{\rm GeV}$$

$$\gamma_{01} = +91~{\rm GeV}$$

$$\gamma_{11} = -43~{\rm GeV}$$

NREFT to Zero-Range EFT

- Inelastic annihilation processes: $\tilde{w}^0 \tilde{w}^0 \to \gamma \gamma$, γZ , ZZ , WW
 - Accounted for by analytically continuing the scattering parameters to complex values

$$\begin{pmatrix} \tilde{\gamma}_{00} & \tilde{\gamma}_{01} \\ \tilde{\gamma}_{01} & \tilde{\gamma}_{11} \end{pmatrix} = \begin{pmatrix} \gamma_{00} & \gamma_{01} \\ \gamma_{01} & \gamma_{11} \end{pmatrix} + i\beta \begin{pmatrix} 6 & \sqrt{2} \\ \sqrt{2} & 4 \end{pmatrix}$$

Matrix from annihilation contribution to

$$\operatorname{Im} \begin{bmatrix} \mathcal{M}[\tilde{w}^{0}\tilde{w}^{0} \to \tilde{w}^{0}\tilde{w}^{0}] & \mathcal{M}[\tilde{w}^{0}\tilde{w}^{0} \to \tilde{w}^{+}\tilde{w}^{-}] \\ \mathcal{M}[\tilde{w}^{+}\tilde{w}^{-} \to \tilde{w}^{0}\tilde{w}^{0}] & \mathcal{M}[\tilde{w}^{+}\tilde{w}^{-} \to \tilde{w}^{+}\tilde{w}^{-}] \end{bmatrix}$$

$$\tilde{w}^{+}$$

 $\tilde{w}^ \tilde{w}^+$ \tilde{w}^+

in the fundamental theory

- Coefficient β determined by fitting width of $\sigma_{\mathrm{ann}}v$ vs M in NREFT
 - $\beta = 0.5 \times 10^{-4} \text{ GeV}$

Bound state production

• At leading order in α , diagrams that contribute to $\tilde{w}^0 \tilde{w}^0 \to (\tilde{w}\tilde{w}) + \gamma \gamma$ are

 Two-bubble diagrams with one photon attached to each bubble vanish by parity:

Bound state production rate

- Blue curve: neutral-wino annihilation cross section to $\gamma\gamma$, γZ
- Red curve: preliminary result for bound state production rate at first critical mass (normalization not yet finalized)
- Green curve: Future calculation of bound state production rate at second critical mass
- Grey region: Excluded from HESS

The coupled Lippmann-Schwinger integral equations:

$$i\hat{\mathcal{A}}(E) = -i\hat{\lambda} + (-i\hat{\lambda}) \hat{I}(E) (i\hat{\mathcal{A}}(E))$$

• Represented diagrammatically: