# Studies of the CKM matrix with semileptonic b-hadron decays at LHCb

Slavomira Stefkova, on behalf of the LHCb collaboration Imperial College London

ICHEP

05.08.2016



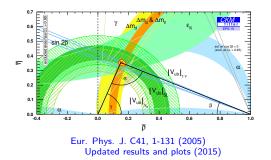


# Outline

- Status of CKM matrix
- $B_s^0$  and  $\Lambda_b^0$  decays
  - Production at LHCb
  - Form factor measurements

• 
$$rac{|V_{ub}|}{|V_{cb}|}$$
 with  $\Lambda^0_b o p \mu^- \overline{
u}$  at LHCb

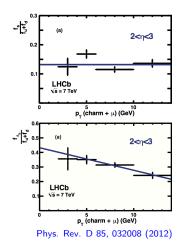
Future prospects at LHCb


• 
$$B_s^0 \to K^- \mu^+ \nu$$

- Fully leptonic  $B^+ \to \mu^+ \mu^- \mu^+ \nu$ 

# Status of CKM matrix

Precision measurements of CKM elements  $|V_{ub}|$  and  $|V_{cb}|$ :

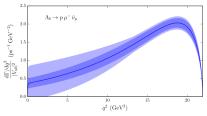

- ▶ improve precision:  $|V_{ub}|$  ( $\simeq$  12% rel. error),  $|V_{cb}|$  ( $\simeq$  3%) (PDG 2014)
- resolve tension between inclusive and exclusive measurements
- ► test the unitarity of the CKM matrix complementary to measurement of sin(2β)



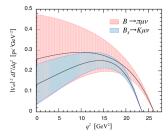
- $|V_{ub}|_{SL}$ : standard modes for exclusive semileptonic decays  $\overline{B} \rightarrow \pi l \overline{\nu}_l \propto |V_{ub}|$  and  $\overline{B} \rightarrow D^{(*)} l \overline{\nu} \propto |V_{cb}|$
- $|V_{ub}|_{\Lambda_b}$ :  $|V_{ub}|/|V_{cb}|$ from  $\Lambda_b$  decay - latest LHCb result

# LHCb's unique $\Lambda_b$ and $B_s$ production

- Standard modes are hard to reconstruct at LHCb!
- Alternative: decays of  $\Lambda_b$  and  $B_s$
- At  $s = \sqrt{7}$  TeV  $\cong$  100,000  $b\bar{b}$  produced per second




▶ Production fraction of B<sub>s</sub> mesons ≈ 14%


► Production fraction of  $\Lambda_b$ dependent on charmed hadron-muon pair's transverse momentum and b-hadron pseudorapidity,  $\eta_1 \approx 20\%$ 

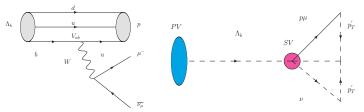
# Lattice QCD calculations for $\Lambda_b$ and $B_s$

To be able to extract  $|V_{ub}|$  or  $|V_{cb}|$  from exclusive decays, measurement of form factors (FF) is necessary!



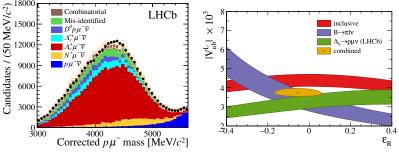
Phys. Rev. D 92, 034503 (2015)




► Differential decay rate  $\frac{d\Gamma[B_s \rightarrow Pl\nu]}{dq^2} \propto |V_{ub}|^2 \times (A(q^2)|f_+(q^2)|^2 + B(q^2)|f_0(q^2)|^2)$ 

- Calculated non-pertubatively with lattice QCD
- ► f<sub>+</sub>(q<sup>2</sup>) and f<sub>0</sub>(q<sup>2</sup>) parametrize the hadronic contributions

• Recent calculation of  $B_s \rightarrow K \mu \nu$  FF improved compared to the standard mode by factor of 2

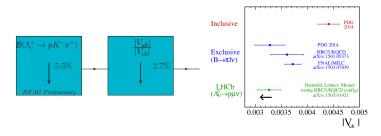

Phys. Rev. D 91, 07451 (2015)

Why  $\Lambda_b^0 \rightarrow p \mu^- \overline{\nu}$  at LHCb?

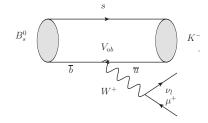


- ▶ Baryonic version of standard mode but with proton and muon → higher identification rates at LHCb
- ▶ Displaced vertex ( $\Lambda_b^0$  flies on average 1 cm before decaying) → LHCb's excellent vertexing and tracking ability.
- ► Challenges: big backgrounds from  $\Lambda_b^0 \to \Lambda_c^+ (\to pX) \mu^- \overline{\nu}$  decays, missing neutrino in a final state, high precision
- Method: fit to corrected mass,  $M_{(\Lambda_b^0)_{corr}} = \sqrt{M_{\rho\mu^-}^2 + |p_T'|} + |p_T'|$  $M_{\rho\mu^-}$ : invariant visible mass  $p_T'$ : missing momentum transverse to the direction of flight of  $\Lambda_b^0$

# $\Lambda_b^0 ightarrow p \mu^- \overline{ u}$ - Results




Nature Physics 11, 743-747 (2015)


- ► Measurement of ratio  $\frac{\mathcal{B}(\Lambda_b^0 \to \rho \mu^- \overline{\nu})_{q^2 > 15 GeV/c^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu})_{q^2 > 7 GeV/c^2}} \times R_{FF} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \to |\mathbf{V}_{ub}| = (\mathbf{3.27} \pm \mathbf{0.15}(exp) \pm \mathbf{0.16}(LQCD) \pm \mathbf{0.06}(|\mathbf{V}_{cb}|)) \times \mathbf{10^{-3}}$
- ▶ 17687  $\pm$  733 events were observed in Run 1 with 2fb<sup>-1</sup>
- Consistent with other exclusive  $|V_{ub}|$  measurements
- Right-handed coupling not supported by this measurement

# New HFAG world average for $\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)$

- ► In measurement of  $\Lambda_b^0 \rightarrow p\mu^-\overline{\nu}$ ,  $\mathcal{B}(\Lambda_c^+ \rightarrow pK^-\pi^+)$  used published by Belle, with 6.84  $\pm 0.24 \frac{\pm 0.21}{-0.27}\%$
- Another measurement was published later using BESIII data
- HFAG performed global fit to all branching fractions of the Cabibbo-favoured Λ<sup>+</sup><sub>c</sub> decays yielding 6.46 ± 0.24%

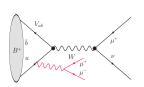


### Future prospects at LHCb



- ►  $B_s^0 \to K^- \mu^+ \nu \to \text{natural}$ candidate for the next measurement!
- Most dangerous background  $B_s^0 \to K^{*-}(\to K^-\pi^0)\mu^+\nu$

| Decay                               | $\Lambda^0_b 	o p \mu^- \overline{ u}$         | $B^0_s  ightarrow K^- \mu^+  u$       |
|-------------------------------------|------------------------------------------------|---------------------------------------|
| Production fraction                 | 20%                                            | 14%                                   |
| Branching fraction                  | $4	imes 10^{-4}$                               | $1	imes 10^{-4}$                      |
| Source of backgrounds               | $\Lambda_c^+$                                  | $\Lambda_c^+$ , $D^0$ , $D^+$ , $D_s$ |
| $\mathcal{B}(X_c)$ error (PDG 2014) | $\frac{+5.3\%}{-4.7\%}$ (biggest systematic!)* | $\pm 3.9\%$                           |
| Theory error FF (slide 5)           | 5%                                             | < 5%                                  |
| Normalization channel               | $\Lambda^0_b 	o \Lambda^+_c \mu^-  u$          | $B_s^0  ightarrow D_s^- \mu^+  u$     |


\* will be soon improved (slide 8)

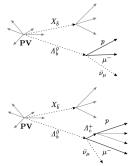
# Other future prospects at LHCb

#### Semileptonic decays

► E.g  $B \rightarrow \rho \mu \nu$ ,  $B \rightarrow \rho \overline{\rho} \mu \nu$ , but additional final states  $\rightarrow$  more complicated for FF calculation

#### Fully leptonic decays




- Measurement of B<sup>+</sup> → τ<sup>+</sup>ν at LHCb not feasible → B<sup>+</sup> → μ<sup>+</sup>ν → helicity suppressed (~ 1/250)
- Addition of virtual photon decaying into a pair of muons lifts the helicity suppression
- ► Final state with 3 muons → good experimental signature
- $\blacktriangleright$  Decay not observed yet  $\rightarrow$  rare  $\approx 10^{-8}$
- ► Need computation of FF, arXiv:1606.03080v1

## Conclusion

- ▶ Probing CKM structure with exclusive semileptonic decays is becoming more precise → both theoretically and experimentally
- ► LHCb's production of  $\Lambda_b^0$  and  $B_s^0$  provide interesting alternative to standard modes  $\rightarrow$  already published  $\Lambda_b^0 \rightarrow p\mu^-\overline{\nu}$  analysis
- ► Tension between inclusive and exclusive measurements persists
- ▶ New ideas with semileptonic or fully leptonic B-decays are under way

# Backup

# Facing challenges of search for $\Lambda_b^0 \to p \mu^- \overline{\nu}$



Nature Physics 11, 743-747 (2015)

To reduce  $V_{cb}$  backgrounds:

- charm has a big lifetime  $\rightarrow$  vertex quality cut
- ► charm backgrounds have presence of additional tracks → train MVA technique to distinguish them
- reject candidates if: σ<sub>Mcorr</sub> > 100 MeV/c<sup>2</sup>