Study on the performance of the Particle Identification Detectors at LHCb after the LHC First Long Shutdown

Marianna Fontana on behalf of the LHCb collaboration

INFN Cagliari and CERN

ICHEP conference 2016
Chicago, Illinois, 3 - 10 August 2016
The LHCb experiment

- Single arm forward spectrometer
- Optimized for b- and c-physics
- Good vertex resolution and tracking
- Excellent particle identification (RICH, CALO, MUON)
- Fast, efficient and flexible high bandwidth trigger system

[See E. Michielin poster]
The PID detectors: RICH

- Need to identify heavy flavour decays from huge hadronic background
- Good $\pi/K/p$ separation on a wide momentum range

- Usage of 2 separate detectors and 2 different radiators:
 - RICH1 covering low p (2-60 GeV/c) region, using C_4F_{10} radiator
 - During LS1 the aerogel has been removed from RICH1
 - RICH2 covers higher momenta (15-100 GeV/c) with CF_4 radiator

- The light rings are produced on an array of HPD located outside the LHCb acceptance (usage of spherical and flat mirrors)
- Combine photon rings and track momentum information
- Log likelihood recomputed for the mass hypothesis of all charged particles
The LHCb detector

The PID detectors: MUON

- 5 tracking stations interspersed with hadron absorbers ($\sim 23\lambda$)
 - M1 before the calorimeter
- Technology
 - MWPC
 - 3-GEM in M1 (inner region)
- Identification based on
 - Track extrapolation to the μ-system
 - Look for hits in the μ stations around the extrapolated track
 - Calculate probability from hit distribution in μ-stations
The PID detectors: CALO

- Calorimeter system identifies electrons/photons/π^0 and hadrons
- It combines information from:
 - SPD
 - Preshower
 - ECAL
 - HCAL

- Photon PID based on 2D PDF $\to \Delta LL$ method
 - Energy: total cluster energy in the ECAL and reconstructed energy deposit in the PS
 - Direction: from the interaction point and the energy-weighted position of the photon candidate
The PID strategy

- The majority of analyses in LHCb rely on particle identification
- The performance are measured with a data-driven method, since PID variables are poorly reproduced in MC

The information obtained from sub-detectors is combined to provide a single set of more powerful variables:

1. ΔLL: the likelihood information produced by each sub-system is added linearly, to form a set of combined likelihoods
2. ProbNN: they are built using multivariate techniques by combining tracking and PID information from each sub-system into a single probability value for each particle hypothesis

In Run 1 the calibration samples were produced with offline selections \rightarrow lack of statistics in some phase-space regions

In Run 2 the strategy has been completely renewed:
- Select the calibration samples directly in the high level trigger
- Larger statistics to have smaller statistical uncertainty
- Systematic studies possible, including those with detector low-level information

[See B. Sciascia talk]
Calibration samples

- Pure samples of known-ID particles have to be collected
- There is a main line (red) for each particle and possibly another one for cross-checks and systematic studies

<table>
<thead>
<tr>
<th>Species</th>
<th>Low $p - p_T$</th>
<th>High p and p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^\pm</td>
<td>$J/\psi \rightarrow e^+e^-$</td>
<td>e^\pm</td>
</tr>
<tr>
<td>μ^\pm</td>
<td>$D_s^+ \rightarrow \mu^+\mu^-\pi^+$</td>
<td>$J/\psi \rightarrow \mu^+\mu^-$</td>
</tr>
<tr>
<td>π^\pm</td>
<td>$K_S^0 \rightarrow \pi^+\pi^-$</td>
<td>$D^* \rightarrow D^0(K^-\pi^+)^\pi^+$</td>
</tr>
<tr>
<td>K^\pm</td>
<td>$D_s^+ \rightarrow K^+K^-\pi^+$</td>
<td>$D^* \rightarrow D^0(K^-\pi^+)^\pi^+$</td>
</tr>
<tr>
<td>p^\pm</td>
<td>$\Lambda^0 \rightarrow p\pi^-$</td>
<td>$\Lambda^0 \rightarrow p\pi^-$, $\Lambda_c^+ \rightarrow pK^-\pi^+$</td>
</tr>
</tbody>
</table>

- New selections designed to improve the kinematic coverage

- The final samples are background subtracted
The PID calibration samples

- **$J/\psi \rightarrow \mu^+\mu^-$**
 - $m(\mu^+\mu^-)$ distribution
 - Candidates / 0.22 MeV/c^2

- **$K_s^0 \rightarrow \pi^+\pi^-$**
 - $m(\pi^+\pi^-)$ distribution
 - Candidates / 0.06 MeV/c^2

- **$B^+ \rightarrow J/\psi K^+$**
 - $m(J/\psi)$ distribution
 - Candidates / 5.50 MeV/c^2

- **$\Lambda_0 \rightarrow p\pi^-$**
 - $m(p\pi^-)$ distribution
 - Candidates / 0.03 MeV/c^2

- **$D^{*+} \rightarrow D^0\pi^+$**
 - $m(D^0\pi^+)$ distribution
 - Candidates / 0.28 MeV/c^2
The RICH performance

- PID performance better than Run 1
- Better background rejection at low momentum, due to RICH1 changes in LS1
The MUON performance

- Integrated efficiency over the full spectrum $\varepsilon(\mu) \sim 95%$
- Mis-id hadron rates: $\varepsilon(p, \pi, K \to \mu) < 1%$ over most of the kinematic range
The CALO performance

- Capability to work with neutral objects: expected π^0 resolution: $< 9 \text{ MeV}/c^2$

![Graph showing mass distribution of $\pi^0\pi^+\pi^-$ events with LHCb Preliminary data from 2015, $\sqrt{s} = 13\text{ TeV}$, luminosity $= 140\text{ pb}^{-1}$.

Example of $\pi^0\pi\pi$ decay, where $\pi^0 \rightarrow \gamma\gamma$, selected in CEP lines.

- Expected electron ID not different from Run 1:
 5.5% misID rate for 90% efficiency

![Graph showing electron efficiency vs. misID rate with LHCb data from 2015.]

The ProbNN performance

- In Run 2 the MVA PID algos are used at trigger level
- In MC MVA algos perform by far better than DLL
- Both ProbNN and DLL remain useful in data

Performance on top of IsMuon
• Only slight modifications on PID detectors during LS1 in LHCb
• For Run 2 a new procedure has been introduced to select the PID calibration samples directly at trigger level
• The selection of the samples have improved the purity, leading to lower statistical uncertainties and better performance
• Better tunings of the global PID algorithms have been implemented
• The improvements open the door to a large number of PID-related studies, which will result in a better understanding of the systematic effects related to the detector
• All these features pave also the way for an improved PID performance for the LHCb upgrade
Backup