The LHCb RICH system: current detector performance and status of the upgrade program

Massimiliano Fiorini
(University of Ferrara and INFN)
on behalf of the LHCb RICH Collaboration

38th International Conference on High Energy Physics
Chicago, 3 – 10 August 2016
The LHCb Experiment

- **pp collision**
- **Tracking detectors**
- **Muon System**
- **Calorimeters**
- **Ring Imaging Cherenkov**

Acceptance:
- 10 mrad
- 250/300 mrad

(side view)
RICH Detectors

RICH-1 (25-300 mrad)
4 m³ C₄F₁₀ n = 1.0014, up to 60 GeV

RICH-2 (15-120 mrad)
100 m³ CF₄ n = 1.0005, up to ~100 GeV
Pixel HPD developed in collaboration with industry
- Vacuum technology and silicon pixel read-out
- 484 HPDs for a total area of 3.3 m²
- $32 \times 32 = 1024$ pixels, 0.5×0.5 mm²
- Very good QE (~27% @270nm)
- Silicon sensor bump-bonded to binary read-out chip (1.1 MHz)
- Very low noise
 - 145 e⁻ (signal 5000 e⁻ typ.)

References: NIMA 595 (2008) 142
EPJ C 73 (2013) 2431
Detector occupancy

RICH-1
RICH-2
Online calibrations (1)

- Performed online since the beginning of Run 2
- Refractive index
 - May change due to temperature, pressure and gas mixture variation
 - Fit the Cherenkov angle distribution for $\beta=1$ tracks

Talk on LHCb real-time calibration/alignment by R. Aaij
Online calibrations (2)

- HPD image
 - Position of the photocathode image on the anode can change due to charging effects
 - Anode images are cleaned and a Sobel filter used to detect the edge
 - Automatic update of the photo-cathode center position
θ_C versus Momentum

Using isolated tracks for RICH-1

Talk on LHCb PID performance by M. Fontana
LHCb Upgrade Plans

- During Run 1 operated at tunable leveled luminosities up to $\sim 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$, 2 \times higher than design value
- In Run 2 we should collect $\sim 5 \text{ fb}^{-1}$ more
 - Main limitation: 1 MHz L0 trigger rate

<table>
<thead>
<tr>
<th>LHC era</th>
<th>HL-LHC era</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1 (2010-12)</td>
<td>Run 3 (2021-23)</td>
</tr>
<tr>
<td>3 fb$^{-1}$</td>
<td>$\sim 25 \text{ fb}^{-1}$</td>
</tr>
<tr>
<td>Run 2 (2015-18)</td>
<td>Run 4 (2027-29)</td>
</tr>
<tr>
<td>8 fb$^{-1}$</td>
<td>$\sim 50 \text{ fb}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Run 5+ (2031+)</td>
</tr>
<tr>
<td></td>
<td>$\sim 100 \text{ fb}^{-1}$</td>
</tr>
</tbody>
</table>

- LHCb Upgrade
 - Operate detector at luminosities of $\sim 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - Upgrade detectors to be able to readout at 40 MHz
 - Install upgraded LHCb during long shutdown 2 (2019-20)
RICH Upgrade

- Adapt to higher luminosity
 - RICH-1 spherical mirrors focal length increased to reduce occupancy (optical system redesigned)
 - Support mechanics and cooling

- 40 MHz readout → replace HPDs with commercial Multi-Anode Photo-Multiplier Tubes (Ma-PMTs) and new front-end electronics
 - 64 ch. Ma-PMTs
 - 40 MHz Front-End: CLARO8 chip plus FPGA-based digital board and GBT chip for data transmission
Photo-multiplier tubes

- Hamamatsu R11265 (1'', 64 pixels) for RICH-1 and RICH-2
- Hamamatsu R12699 (2'', 64 pixels) for RICH-2 only
 - Outer (low occupancy) regions of RICH-2
The Elementary Cell (EC)

- Two versions for small (and large) Ma-PMTs
 - 4 (1) Ma-PMTs
 - 1 Base-board, 1 Back-board
 - 4 (2) Front-end boards (FEB)
 - Magnetic shield
 - Mechanics
Electronics requirements

- Hamamatsu Ma-PMTs main characteristics
 - Typical gain at 1000 V for R11265 is $\sim 1 \times 10^6$
 - 1:3 pixel gain spread in PMT, 1:3 spread in different PMTs

- Requirements coming from the LHCb environment:
 - Single photon counting at 40 MHz with Ma-PMTs (no dead time at 25 ns)
 - Radiation hardness for 50 fb$^{-1}$ total integrated luminosity (200 krad, 3×10^{12} 1 MeV n_{eq}/cm2, 1.2×10^{12} HEH/cm2)
The CLARO8 chip

- The CLARO8 is a 8-channel amplifier/discriminator ASIC designed for single-photon counting with Ma-PMTs

- Main features:
 - 0.35 µm CMOS technology from AMS (→ low cost, high yield)
 - Allows 40 MHz operation (recovery < 25 ns)
 - Power consumption ~1 mW/ch.
 - Adjustable threshold (6 bits)
 - Adjustable gain (2 bits)
 - Binary read-out
 - 128 bit register TMR protected
 - Radiation-hard by design cells

- Block diagram:
Test beam activities

- A compact detector based on solid radiator was proposed and tested in 2014 – 2016 to measure the performance of close-to-final opto-electronics chain

- Operation of a complete setup in a realistic environment
 - Calibrations, noise, thermal test, Cherenkov ring fitting
 - Validation of both EC types
Conclusions

- The LHCb RICH detectors have been operating with high efficiency in a high multiplicity environment and form an essential part of the experiment
 - Online calibrations and alignment in Run 2
- The LHCb RICH upgrade program, proposed to cope with 2×10^{33} cm$^{-2}$s$^{-1}$ luminosity, is progressing well
 - New photo-detectors and electronics chain for full detector read-out at 40 MHz
 - Modified RICH optics and mechanics
 - Very successful test-beams validated the close-to-final opto-electronics chain in realistic conditions
 - We recently had the first production readiness review
 - On schedule for installation during 2019-20
SPARES
Photon detector plane: 14×7 HPDs

VELO Exit Window
2 mm aluminum
Sealed to gas enclosure
No RICH-1 entrance window

Spherical Mirrors Lightweight carbon fiber mirrors
1.5% radiation length
(4 segments)

Flat Mirrors (16 segments)

RICH-1 Exit Window
Carbon fiber and foam
Sealed direct to the beam pipe
Spherical Mirrors (56 segments)

RICH-2 entrance/exit windows carbon fiber and foam sandwich

Gas Enclosure contains CF$_4$ gas radiator and the optical system

Flat Mirrors each made from 40 square glass segments

Magnetic Shields protect the HPD planes

Photon detector plane: 9×16 HPDs
Radiators and material budget

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C_4F_{10}</th>
<th>CF_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>L [cm]</td>
<td>~ 110</td>
<td>167</td>
</tr>
<tr>
<td>n</td>
<td>1.0014</td>
<td>1.0005</td>
</tr>
<tr>
<td>θ_c^{max} [mrad]</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td>$p_{\text{thresh}}(\pi)$ [GeV/c]</td>
<td>2.6</td>
<td>4.4</td>
</tr>
<tr>
<td>$p_{\text{thresh}}(K)$ [GeV/c]</td>
<td>9.3</td>
<td>15.6</td>
</tr>
<tr>
<td>$p_{\text{thresh}}(p)$ [GeV/c]</td>
<td>17.7</td>
<td>29.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>RICH 1</th>
<th>RICH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrance window</td>
<td>0.001</td>
<td>0.014</td>
</tr>
<tr>
<td>Gas radiator</td>
<td>0.026</td>
<td>0.017</td>
</tr>
<tr>
<td>Mirror</td>
<td>0.015</td>
<td>0.079</td>
</tr>
<tr>
<td>Exit window</td>
<td>0.006</td>
<td>0.014</td>
</tr>
<tr>
<td>Total (X_0)</td>
<td>0.048</td>
<td>0.124</td>
</tr>
</tbody>
</table>
Magnetic field corrections

- HPD image distortion due to magnetic field
- Projection of test pattern with and without magnetic field to extract correction parameters

RICH-1
σ=0.5mm

RICH-2
σ=0.47mm
Alignment

- Many components aligned with an accuracy of 0.1 mrad
 - Whole detector, detector halves, mirror segment and HPD

- Then use reconstructed Cherenkov angle for $\beta=1$ tracks
 - Misalignment observed as shift of track projection point w.r.t. the center of the corresponding Cherenkov ring
Cherenkov angle resolution

- Single photon resolution
 - Distributions for saturated ($\beta=1$) tracks

\[\sigma_{\Delta \theta} = 1.618 \pm 0.002 \text{ mrad} \]
\[\sigma = 1.52 \pm 0.02 \text{ (MC)} \]

\[\sigma_{\Delta \theta} = 0.68 \pm 0.02 \text{ mrad} \]
\[\sigma = 0.68 \pm 0.01 \text{ (MC)} \]
PID algorithm

- Consider all photons and all tracks and all radiators at once and maximize likelihood function:
 \[L = L(n_{\text{pixel}}, \sum_{\text{track}} e_{\text{pixel,track}}, b_{\text{pixel}}) \]

- Take all PIDs to be pions
 - Estimate background parameter \(b_{\text{pixel}} \) per HPD

- Calculate likelihood of given pixel distribution

- Iterate
 - Change PID hypothesis one track at a time
 - Recalculate likelihood
 - Choose change that had biggest impact
 - Assign new PID to that track

- Until no significant improvement is found
 - As signal photons are now identified better, update background estimate and start a 2nd (and usually final) iteration
PID Performance (1)

- PID performance evaluated from data for Run1
 - Genuine $\pi/K/p$ samples identified from kinematics only
PID Performance (2)

- Invariant mass distribution for $B \rightarrow h^+h^-$ decays
 - before (left) and after (right) using RICH PID information

- Signal: $B^0 \rightarrow \pi^+\pi^-$ (turquoise dotted line)

- Other contributions are eliminated ($B^0 \rightarrow K\pi$, $B^0 \rightarrow 3$–body, $B_s \rightarrow KK$, $B_s \rightarrow K\pi$, $\Lambda_b \rightarrow pK$, $\Lambda_b \rightarrow p\pi$)

for Run1
Ion Feedback (IFB) occurs when a photoelectron ionises a residual gas atom

- The ion drifts to the photocathode and produces on impact a cluster of secondary electrons
- The cluster of electrons arrives at the sensor with a characteristic delay of typically 200-300 ns due to the drift time of the ion
Occupancy for upgrade phase
Ma-PMT Vs HPD QE

![Graph showing the quantum efficiency (QE) of Ma-PMT and HPD S20 vs wavelength. The graph includes data points for SBA Borosilicate and HPD S20.](image-url)
Angular resolutions

<table>
<thead>
<tr>
<th>Resolutions</th>
<th>Current RICH 1 (HPDs)</th>
<th>Upgraded RICH 1</th>
<th>Upgraded RICH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission point</td>
<td>0.61</td>
<td>0.37</td>
<td>0.27</td>
</tr>
<tr>
<td>Chromatic</td>
<td>0.84</td>
<td>0.58</td>
<td>0.31</td>
</tr>
<tr>
<td>Pixel</td>
<td>0.99</td>
<td>0.44</td>
<td>0.20</td>
</tr>
<tr>
<td>Tracking</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Total resolution</td>
<td>1.50</td>
<td>0.88</td>
<td>0.60</td>
</tr>
</tbody>
</table>
PID performance

- 4×10^{32} cm$^{-2}$s$^{-1}$ current geometry
- 10×10^{32} cm$^{-2}$s$^{-1}$ current geometry
- 20×10^{32} cm$^{-2}$s$^{-1}$ current geometry
- 20×10^{32} cm$^{-2}$s$^{-1}$ upgraded geometry
CLARO timeline

(2011) - Design of the 4 ch. CLARO prototype
- Deep characterization on the test bench

(2012) - First tests with R11265 Ma-PMTs and Silicon Photomultipliers

(2013) - Radiation hardness tests
- More tests with the R11265 Ma-PMTs
- Chosen as the baseline front-end ASIC for the LHCb RICH Upgrade

(2014) - CLARO8 designed and produced (v0, v1)
- CLARO8 bench, beam and radiation hardness tests

(2015) - CLARO8 v2 designed and produced
- CLARO8 v2 bench and beam test

(2016) - CLARO8 v3 designed, produced and tested
- CLARO8 Production Readiness Review (PRR)
CLARO8 signals

- The amplifier and DAC of any channel are buffered to output pins through a multiplexer controlled by global bits in the configuration register.

- LHCb RICH binary read-out: hit or no-hit information for each bunch crossing at 40 MHz
 - Hits are “collected” by FPGA and sent off-detector.
Magnetic shield design

- Design almost finalized

Central pixel

Edge pixel
Digital board

- Motherboard with FPGAs and power distribution (DC-DC)
- Plugins for control and data link
- Thermally coupled to cold bar
RICH columns

- Ultimate mechanical support for (MaPMTs \rightarrow Elementary Cells) + PDMDB + harness + cooling + …
- Photo Detector Assembly (PDA)