

The LHCb RICH system: current detector performance and status of the upgrade program

Massimiliano Fiorini (University of Ferrara and INFN)

on behalf of the LHCb RICH Collaboration

The LHCb Experiment

RICH Detectors

RICH-1 (25-300 mrad)

 $4 \text{ m}^3 \text{ C}_4 F_{10} \quad n = 1.0014$, up to 60 GeV

288 HPDs and magnetic shielding

RICH-2 (15-120 mrad)

 $100 \text{ m}^3 \text{ CF}_4 \quad \text{n} = 1.0005, \text{ up to } \sim 100 \text{ GeV}$

Hybrid Photo-Detectors (HPD

- Pixel HPD developed in collaboration with industry
 - Vacuum technology and silicon pixel read-out
- 484 HPDs for a total area of 3.3 m²
- $\sim 32 \times 32 = 1024 \text{ pixels}, 0.5 \times 0.5 \text{ mm}^2$
- Very good QE (~27% @270nm)
- Silicon sensor bump-bonded to binary read-out chip (1.1 MHz)
- Very low noise
 - □ 145 e⁻ (signal 5000 e⁻ typ.)

References: NIMA 595 (2008) 142 EPJ C 73 (2013) 2431

Detector occupancy

Online calibrations (1)

- Performed online since the beginning of Run 2
- Refractive index
 - May change due to temperature, pressure and gas mixture variation
 - Fit the Cherenkov angle distribution for β =1 tracks

Talk on LHCb real-time calibration/alignment by R. Aaij

Online calibrations (2)

HPD image

- Position of the photocathode image on the anode can change due to charging effects
- Anode images are cleaned and a Sobel filter used to detect the edge
- Automatic update of the photo-cathode center position

θ_C versus Momentum

LHCb Upgrade Plans

- During Run 1 operated at tunable leveled luminosities up to \sim 4 × 10³² cm⁻²s⁻¹, 2 × higher than design value
- In Run 2 we should collect ~5 fb⁻¹ more
 - Main limitation: 1 MHz L0 trigger rate

LHC era			HL-LHC era	
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-23)	Run 4 (2027-29)	Run 5+ (2031+)
3 fb ⁻¹	8 fb ⁻¹	~25 fb ⁻¹	~50 fb ⁻¹	~100 fb ⁻¹

LHCb Upgrade

- □ Operate detector at luminosities of \sim 2 × 10³³ cm⁻²s⁻¹
- Upgrade detectors to be able to readout at 40 MHz
- □ Install upgraded LHCb during long shutdown 2 (2019-20)

RICH Upgrade

Current RICH-1

Upgraded RICH-1

- Adapt to higher luminosity
 - RICH-1 spherical mirrors focal length increased to reduce occupancy (optical system redesigned)
 - Support mechanics and cooling
- 40 MHz readout → replace HPDs with commercial Multi-Anode Photo-Multiplier Tubes (Ma-PMTs) and new front-end electronics
 - □ 64 ch. Ma-PMTs
 - 40 MHz Front-End: CLARO8 chip plus FPGA-based digital board and GBT chip for data transmission

Photo-multiplier tubes

- Hamamatsu R11265 (1", 64 pixels) for RICH-1 and RICH-2
- Hamamatsu R12699 (2", 64 pixels) for RICH-2 only
 - Outer (low occupancy) regions of RICH-2

The Elementary Cell (EC)

- Two versions for small (and large) Ma-PMTs
 - □ 4 (1) Ma-PMTs
 - □ 1 Base-board, 1 Back-board
 - 4 (2) Front-end boards (FEB)

FEB

CLARO BkB-R

- Magnetic shield
- Mechanics

PDM-DB

SAMTEC "SEAF" connector

"Cold Bar"

Electronics requirements

- Hamamatsu Ma-PMTs main characteristics
 - Typical gain at 1000 V for R11265 is $\sim 1 \times 10^6$
 - 1:3 pixel gain spread in PMT, 1:3 spread in different PMTs
- Requirements coming from the LHCb environment:
 - Single photon counting at 40 MHz with Ma-PMTs (no dead time at 25 ns)
 - Radiation hardness for 50 fb⁻¹ total integrated luminosity (200 krad, 3×10^{12} 1 MeV n_{eq}/cm², 1.2×10^{12} HEH/cm²)

The CLARO8 chip

- The CLARO8 is a 8-channel amplifier/discriminator ASIC designed for single-photon counting with Ma-PMTs
- Main features:
 - □ 0.35 μm CMOS technology from AMS (→ low cost, high yield)
 - Allows 40 MHz operation (recovery < 25 ns)
 - Power consumption ~1 mW/ch.
 - Adjustable threshold (6 bits)
 - Adjustable gain (2 bits)
 - Binary read-out
 - 128 bit register TMR protected
 - Radiation-hard by design cells
- Block diagram:

Test beam activities

- A compact detector based on solid radiator was proposed and tested in 2014 2016 to measure the performance of close-to-final opto-electronics chain
- Operation of a complete setup in a realistic environment
 - Calibrations, noise, thermal test, Cherenkov ring fitting
 - Validation of both EC types

Conclusions

- The LHCb RICH detectors have been operating with high efficiency in a high multiplicity environment and form an essential part of the experiment
 - Online calibrations and alignment in Run 2
- The LHCb RICH upgrade program, proposed to cope with 2×10^{33} cm⁻²s⁻¹ luminosity, is progressing well
 - New photo-detectors and electronics chain for full detector read-out at 40 MHz
 - Modified RICH optics and mechanics
 - Very successful test-beams validated the close-to-final optoelectronics chain in realistic conditions
 - We recently had the first production readiness review
 - On schedule for installation during 2019-20

SPARES

RICH-1

Photon detector plane: 14×7 HPDs

VELO Exit Window

2 mm aluminum

Sealed to gas enclosure

No RICH-1 entrance window

Flat Mirrors (16 segments)

Spherical Mirrors Lightweight carbon fiber mirrors 1.5% radiation length (4 segments)

RICH-1 Exit Window Carbon fiber and foam Sealed direct to the beam pipe

RICH-2

RICH-2 entrance/exit windows carbon fiber and foam sandwich

Gas Enclosure contains CF₄ gas radiator and the optical system

Flat Mirrors each made from 40 square glass segments

Magnetic Shields protect the HPD planes

Photon detector plane: 9×16 HPDs

Radiators and material budget (NFN)

Parameter		C_4F_{10}	CF_4
\overline{L}	[cm]	~ 110	167
n		1.0014	1.0005
$ heta_{ m c}^{ m max}$	[mrad]	53	32
$p_{ m thresh}$	$(\pi) [\mathrm{GeV}/c]$	2.6	4.4
$p_{ m thresh}$	(K) [GeV/c]	9.3	15.6
$p_{ m thresh}$	(p) $[GeV/c]$	17.7	29.7

Item	RICH 1	RICH 2
Entrance window	0.001	0.014
Gas radiator	0.026	0.017
Mirror	0.015	0.079
Exit window	0.006	0.014
Total (X_0)	0.048	0.124

Magnetic field corrections

- HPD image distortion due to magnetic field
- Projection of test pattern with and without magnetic field to extract correction parameters

Alignment

- Many components aligned with an accuracy of 0.1 mrad
 - Whole detector, detector halves, mirror segment and HPD

- Then use reconstructed Cherenkov angle for β =1 tracks
 - Misalignment observed as shift of track projection point w.r.t. the center of the corresponding Cherenkov ring

Cherenkov angle resolution

- Single photon resolution
 - □ Distributions for saturated (β =1) tracks

PID algorithm

 Consider all photons and all tracks and all radiators at once and maximize likelihood function:

$$L = L(n_{pixel}, \sum_{track} e_{pixel, track}, b_{pixel})$$

- Take all PIDs to be pions
 - Estimate background parameter b_{pixel} per HPD
- Calculate likelihood of given pixel distribution
- Iterate
 - Change PID hypothesis one track at a time
 - Recalculate likelihood
 - Choose change that had biggest impact
 - Assign new PID to that track
- Until no significant improvement is found
 - As signal photons are now identified better, update background estimate and start a 2nd (and usually final) iteration

PID Performance (1)

PID performance evaluated from data

for Run1

 \Box Genuine $\pi/K/p$ samples identified from kinematics only

PID Performance (2)

- Invariant mass distribution for B → h+h- decays
 - before (left) and after (right) using RICH PID information

- Signal: $B^0 \rightarrow \pi^+\pi^-$ (turquoise dotted line)
- Other contributions are eliminated ($B^0 \rightarrow K\pi$, $B^0 \rightarrow 3$ body, $B_s \rightarrow KK$, $B_s \rightarrow K\pi$, $\Lambda_b \rightarrow pK$, $\Lambda_b \rightarrow p\pi$)

Ion Feedback (IFB)

- Ion Feedback (IFB) occurs when a photoelectron ionises a residual gas atom
 - The ion drifts to the photocathode and produces on impact a cluster of secondary electrons
 - The cluster of electrons arrives at the sensor with a characteristic delay of typically 200-300 ns due to the drift time of the ion

Occupancy for upgrade phase INFN

Ma-PMT Vs HPD QE

Angular resolutions

	$\operatorname{Current}$		
Resolutions	RICH 1	Upgraded	Upgraded
[mrad]	(HPDs)	RICH 1	RICH 2
Emission point	0.61	0.37	0.27
Chromatic	0.84	0.58	0.31
Pixel	0.99	0.44	0.20
Tracking	0.40	0.40	0.40
Total resolution	1.50	0.88	0.60

PID performance

CLARO timeline

- (2011) Design of the 4 ch. CLARO prototype
 - Deep characterization on the test bench
- (2012) First tests with R11265 Ma-PMTs and Silicon Photomultipliers
- (2013) Radiation hardness tests
 - More tests with the R11265 Ma-PMTs
 - Chosen as the baseline front-end ASIC for the LHCb RICH Upgrade
- (2014) CLARO8 designed and produced (v0, v1)
 - CLARO8 bench, beam and radiation hardness tests
- (2015) CLARO8 v2 designed and produced
 - CLARO8 v2 bench and beam test
- (2016) CLARO8 v3 designed, produced and tested
 - CLARO8 Production Readiness Review (PRR)

CLARO8 signals

- The amplifier and DAC of any channel are buffered to output pins through a multiplexer controlled by global bits in the configuration register
- LHCb RICH binary read-out: hit or no-hit information for each bunch crossing at 40 MHz
 - Hits are "collected" by FPGA and sent off-detector

Magnetic shield design

Design almost finalized

Digital board

- Motherboard with FPGAs and power distribution (DC-DC)
- Plugins for control and data link
- Thermally coupled to cold bar

RICH columns

- Ultimate mechanical support for (MaPMTs →
 Elementary Cells) + PDMDB + harness + cooling + ...
- Photo Detector Assembly (PDA)

