Higgs Physics at CEPC

Y. Fang, G. Li, Q. Li, M. Ruan

On behalf of the CEPC simulation group

3-10 Aug 2016

Higgs program at CEPC

Observables: Higgs mass, CP, $\sigma(ZH)$, and $\sigma(ZH, vvH)^*Br(H\rightarrow X)$

Derive: Higgs width, Br(exotic), absolute values of branching ratios & of couplings

CEPC Conceptual detector, developed from ILD

A detector reconstruct all the physics objects (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

High Precision VTX located close to IP: b, c, tau tagging High Precision Tracking system: δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹) PFA oriented Calorimeter System (~o(10⁸) channels): Tagging/ID, Jet energy resolution, etc

Higgs measurements: status

Model-independent measurement of $\sigma(ZH)$

Zhenxing Chen

Phys. Rev. D 90, 015001

3-10 Aug 2016

Higgs width

Br(H->bb, cc, gg) measurements

2. Selection

More details						
see Yu Bai's poster						

_

Cut Definition	Sig.	qq	qqnn	qqln	xxh
FSClasser output	148955	25M	183687	3698817	63194
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	148808	23M	163088	3439927	58882
$110 < E_{\rm total} < 150$	132561	10M	125878	705357	34215
$P_T > 19$	126006	34198	116314	627602	32300
Isolation lepton veto	123586	33775	115867	327206	23773
$100 < M_{\rm inv} < 135$	117845	9506	10420	162511	21277
$70 < M_{\rm rec} < 125$	111886	7521	10045	110426	20458
$0.15 < y_{12} < 1$	111353	7405	9702	101797	19983
$y_{23} < 0.06$	105078	6644	8456	69313	14495
$y_{34} < 0.008$	100117	6504	7878	58532	6899
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	97277	5178	5365	33293	6273
BDT > -0.01	76666	344	118	69	1594
Significance			265.20		
Efficiency			51.5%		

3. BDT & final results

(b) The B-C Likeliness plot for $H \rightarrow c\bar{c}$

Template fit

No SM bkg in template fit. since no full simulation

δB(H->bb)/Br(H->bb) ~ 0.2%

vvH

events

$Br(H \rightarrow WW)$

ZH, H->WW*	Yield	Object	Isolation	Signal	Main	Accuracy	Combined
		reconstructed		Efficiency	Background		
Z(μμ)H(evev)	88	76(86.36%)	61(80.26%)	36(40.91%)	4(ZH)	17.57%	
$Z(\mu\mu)H(\mu\nu\mu\nu)$	89	80(89.89%)	77(96.25%)	52(58.43%)	6(ZH&ZZ)	14.65%	
$Z(\mu\mu)H(ev\mu v)$	174	157(90.23%)	147(93.63%)	105(60.34%)	0	9.76%	2.68%
Z(μμ)H(evqq)	1105	1042(94.30%)	864(82.92%)	663(60.00%)	45(ZH)	4.02%	
$Z(\mu\mu)H(\mu vqq)$	1110	1056(95.14%)	988(93.56%)	717(64.59%)	159(ZH&ZZ)	4.13%	
Z(μμ)H(qqqq)	Preliminary						~3.5%
Z(ee)H(evev)	91	62(68.13%)	60(96.77%)	22(24.16%)	16(SZ)	28.02%	
Z(ee)H(μvμv)	82	63(76.83%)	63(100%)	44(53.66%)	24(SZ)	18.74%	
Z(ee)H(evµv)	178	132(74.16%)	124(93.94%)	82(46.07%)	25(ZH&SZ)	12.61%	2.87%
Z(ee)H(evqq)	1182	1041(88.07%)	916(87.99%)	621(51.78%)	188(SZ&ZH)	4.62%	
Z(ee)H(µvqq)	1221	1194(97.79%)	1048(87.77%)	684(56.02%)	49(ZH&SZ)	3.96%	
Z(ee)H(qqqq) Preliminary estimation					~4%		

- Full Simulation on 12 independent channels
 - Very high object reconstruction efficiency
 - Combined result: 1.57%
- Extrapolation from other ILC channels: 1.59%
- Combined: 1.12%

	Z→II	tautau	vv	gg
H→WW*→4q		3.45k	2.3%	69.1k
μνqq		1.14k	6.47k	2 20%
evqq	1 60/	1.14k	6.47k	2.2/0
eevv	1.0%	93	527	1.9k
μμνν		93	527	1.9k
eµvv		186	1154	3.7k
X + tau	3.2k	1.6k	9.14k	32.0k

$Br(H \rightarrow ZZ)$

ZZZ*	Yield	Object	Signal	Main	Accuracy	Comments	
		reconstructed	Efficiency(%)	Background	(%)		
μμννqq	128	118	63.3	h->ww&zz_sl	12.9	Tau finder would be	
μμqqvv	128	125	-	h->bb&zz_sl	>25	highly appreciated	
eevvqq	132	91	53.8	h->ww&sze_sl	15.8		
eeqqvv	132	88	-	h->bb&zz_sl	>25	Reconstructed	
vvµµqq	158	144	61.4	h->t,w&zz_sl	11.0	efficiency of electron	
vvqqµµ	158	149	51.9	h->w,b&zz_sl	12.9	need to be improved	
vveeqq	151	118	43.1	h->w&sze_sl	21.3		
vvqqee	151	134	-	h->bb&sze_sl	>25		
qqµµvv	135	115	-	h->tt&zz_sl	>25	Compare to ll recoil,	
qqvvμμ	135	122	-	h->t,w&zz_sl	>25	qq recoil mass has	
qqeevv	127	107	-	h->tt&sze_sl	>25	distinguishing power	
qqvvee	127	123	-	h->t,w&sze_sl	>25	to SM background	
µµµµqq/qqµµ	43	39	69.8	h->tt&zz_sl	19.9	Tau finder & Electron	
µµeeqq/qqee	43	39	60.5	h->tt&zz_sl	21.2	Reconstruction	
eeeeqq/eeqqee	43	33	-	h->tt&sze_sl	>25		
eeµµqq/eeqqµµ	43	41	58.2	h->tt&sze_sl	19.9		

Full Simulation analysis performed on 16 independent channels.

8 Channels acquire accuracy better than 25%.

Combined accuracy: **5.4%** TLEP extrapolation: **4.3%**

$\sigma(vvH)^*Br(H\rightarrow bb)$ and Higgs width

- Accuracy of $\sigma(ZH)^*Br(H\rightarrow bb) = 2.8\%$
- Γ_{total}: determined to:
 - 4.4% from $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)^*Br(H \rightarrow ZZ)$ (~g⁴(HZZ)/ Γ_{total})
 - 3.3% from $\sigma(ZH)^*Br(H\rightarrow bb)$, $\sigma(vvH)^*Br(H\rightarrow bb)$, $\sigma(ZH)^*Br(H\rightarrow WW)$, $\sigma(ZH)$
 - Combined accuracy: 2.7%

More details: see Zhenxing's presentation

BSM

Higgs invisible decays

Assuming sigma(ZH)*Br(H->inv) = 200 fb

Invisible upper limit at CEPC: 0.14% at 95% C.L

H→Exotic, Leptonic

95% up limit: Br(H->ee) = 1.7e-4; Br(H->emu) = 1.2e-4;

3-10 Aug 2016

H→Exotic, Hadronic

Suggested by prof. Liu

Benchmark Points

Scan over the parameter space for sensitivity:

1. Fix $m_{\tilde{\chi}_1^0} = 0$ GeV and make exclusion contours on the m_{h^0} and $m_{\tilde{\chi}_2^0}$ plane with the range:

 $10 \text{ GeV} < m_{\mu^0} < 60 \text{ GeV} (15,25,35,45,55 \text{ GeV})$ $10~{\rm GeV} < m_{\tilde{z}_7^0} < 125~{\rm GeV}~(20,40,60,80,100,120~{\rm GeV})$

2. Fix $m_{\mu 0} = 30 \,\text{GeV}$ and make exclusion contours on the $m_{\chi 0}$ and $m_{\tilde{\chi}_2^0}$ plane, with the range:

0 GeV < $m_{\tilde{\chi}_1^0} <$ 60 GeV (5,15,25,35,45,55 GeV) 10 GeV < $m_{\tilde{\chi}_2^0} <$ 125 GeV (20,40,60,80,100,120 GeV)

Mhi (GeV)

3-10 Aug 2016

Higgs measurements: accuracies

	PreCDR	Present
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.3%
σ(ZH)*Br(H→WW)	1.5%	1.1%
σ(ZH)*Br(H→ZZ)	4.3%	5.4%
σ(ZH)*Br(H→тт)	1.2%	<1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
σ(ZH)*Br(H→μμ)	17%	17%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	-	1.7e-4/1.2e-4
Br(H→bbχχ, 4b)	<10 ⁻³	Br(H→bbχχ) ~ 3e-4

CEPC a precision experiment

- Many sub-percentage measurements
- Systematics should be taken into account in design stage
- Integrated luminosity must be ~ 1 per mille for $\sigma(ZH)$
- Beam energy calibration must be ~ 1MeV for Higgs mass,1MeV~10^-5
- ISR correction: (1+δ) change the cross section ~20%, which must be corrected by MC: already 0.5%?
- Interference effect in mass measurement: H->2γ, 20-50MeV shift

Summary

- CEPC Higgs Physics
 - $\sigma(ZH)$, Total Width, absolute branching ratios, invisible/exotic decays
 - Requirements on the detector/reconstruction/systematics
- Significant Progress since PreCDR, toward CDR and a realistic experiment
- Perspectives
 - Two detector geometries: pure silicon detector initialized
 - Iterate with Detector Design/Optimization
 - Systematics -> detector design/optimization: reconstruction, tracking, PID, jet flavor correlation, luminosity monitoring, beam energy calibration, ISR correction, interference effects ...
- Welcome to join this effort