Neutrino Interactions and Long-Baseline Experiments

Ulrich Mosel

Institut für Theoretische Physik

LBL Experiments

- Neutrino Long-Baseline Experiments use Nuclear Targets, H₂O, C, Ar, ···
- Have to understand response of the nucleus to the incoming Neutrino and the final state interactions of outgoing particles
- THIS IS A NUCLEAR PHYSICS PROBLEM

A wake-up call for the high-energy physics community:

Low-Energy Nuclear Physics determines response of nuclei to neutrinos

Nu-Experiments need Event Generators

- High-energy physicists like MC cascade generators, interactions of free particles, appropriate for free, high-energy interactions
- Nuclear physicists have to take care of nucleus and interactions of bound nucleons at lower energies
 - → quantum kinetic transport theory developed over the last 20 years to deal with such systems, used in QGP physics and supernova neutrino transport, but also in material science

- GiBUU: Quantum-Kinetic Theory and Event Simulation based on Kadanoff-Baym equations
- Physics content: Buss et al, Phys. Rep. 512 (2012) 1
- code available : http://gibuu.hepforge.org
- GiBUU describes (within the same unified theory and code)
 - heavy ion reactions, particle production and flow
 - pion and proton induced reactions
 - low and high energy photon and electron induced reactions
 - neutrino induced reactions
 -using the same physics input! And the same code!

Quantum-Kinetic Transport Equation

Kadanoff-Baym Equation

Collision term

$$\mathcal{D}F(x,p)+\mathrm{tr}\left\{\mathrm{Re}\tilde{S}^{\mathrm{ret}}(x,p),-\mathrm{i}\tilde{\Sigma}^{<}(x,p)\right\}_{\mathrm{pb}}=C(x,p).$$

Drift term

$$\left[\left(1 - \frac{\partial H}{\partial p_0} \right) \frac{\partial}{\partial t} + \frac{\partial H}{\partial \mathbf{p}} \frac{\partial}{\partial \mathbf{x}} - \frac{\partial H}{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{p}} + \frac{\partial H}{\partial t} \frac{\partial}{\partial p^0} + \text{KB term} \right] F(x, p)$$

$$= - \text{loss term} + \text{gain term}$$

$$F(x, p) = 2\pi g f(x, p) A(x, p).$$

Spectral function

Wigner-transformed of 1p propagator

Input: X-sections on Nucleon

Neutrino Cross sections: Nucleon

From: J.A. Formaggio, G.P. Zeller ICHEP16

 10^{2}

E. (GeV)

Yellow: energy range of present long-baseline Complicated superposition

Quasielastic Scattering

- Vector form factors from e –scattering
- axial form factors $F_A \Leftrightarrow F_P \text{ and } F_A(0) \text{ via PCAC}$ dipole ansatz for F_A with

$$M_A$$
= 1 GeV:

$$F_A(Q^2) = \frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}$$

Pion Production

Reanalysis of BNL data (posthumous flux correction) by T2K group:

C.Wilkinson et al,

Phys.Rev. D90 (2014) no.11, 112017

Agrees with earlier findings in Graczyk et al, Phys.Rev. D80 (2009) 093001 Lalakulich et al, Phys.Rev. D82 (2010) 0930

20 % uncertainty in pion production cross sections

Now to the nucleus: Inclusive

MiniBooNE

DUNE ND

NOvA inclusive X-sections

Dominant are CCQE, Δ and DIS 2p2h much smaller

Now to Oscillations

- Must reconstruct neutrino energy
- Here: QE-based method

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps

Uncertainties due to energy reconstruction(left) as large as δ_{CP} dependence (right)

DUNE, δ_{CP} Sensitivity

Appearance probability: $P_{\mu \rightarrow e}$

Need energy to distinguish between different δ_{CP}

Need to know neutrino energy to better than about 100 MeV

QE Energy Reconstruction for DUNE

Dashed: reconstructed, solid: true energy

Muon survival in 0 pion sample

All calculations from GiBUU

Mosel et al.,
Phys.Rev.Lett. 112 (2014) 151802

Nearly 500 MeV difference between true and reconstructed event distributions -> not a useful method

QE Energy Reconstruction for DUNE

Dashed: reconstructed, solid: true energy

Muon survival in $0\pi + 1p + Xn$ sample

Dramatic improvement in 0 pi, 1p, Xn sample, down by only factor 3

Summary

- Neutrino-nucleus events are determined by nuclear response and nuclear final state interactions
- Quantum-kinetic transport theory goes beyond MC cascade generators in treating nuclear effects
- Precision era experiments require precision era (new) generators: use best available theory

Literature

- Material in this talk taken from:
 - Gallmeister et al, arXiv:1605.09391
 - Buss et al, Phys. Rep. 512 (2012) 1
 - Mosel et al, Phys.Rev.Lett. 112 (2014) 151802
 - Lalakulich et al, Phys. Rev. C 86, 054606 (2012)