Phenomenological MSSM interpretation of CMS results

Sam Bein, Florida State University

August 3, 2016

[1] Vardan Khachatryan et al. Phenomenological MSSM interpretation of CMS searches in pp collisions at sqrt(s) = 7 and 8 TeV. 2016. arXiv:1606.03577

Submitted to JHEP

Road map

- Definition of the pMSSM
- CMS analyses considered
- Posterior density
- Interpretation of CMS 7 and 8 TeV results
- pMSSM points that evaded run 1 analyses

pMSSM

Non-prejudiced submodel of the MSSM that captures most of the phenomenological features of the MSSM **19 Parameters:**

Gaugino mass parameters M_1 , M_2 , and M_3 Higgs sector parameters $\tan(\beta)$, μ , and m_A 10 sfermion mass parameters m_i Trilinear couplings A_t , A_b , and A_{τ}

MCMC scan (20 million points) Simulated events for 7200 points

Samuel Bein; ICHEP 2016

3

Probability density

Bayes' theorem

$$p(\theta|Data^{CMS}) \propto L(Data^{CMS}|\theta)\Pi(\theta)$$

Samuel Bein; ICHEP 2016

Probability density pre-CMS results $\mathcal{B}(\mathbf{b} \to \mathbf{s}\gamma) \quad \alpha_s \quad \mathbf{B}_s \to \mu\mu$ $m_{
m t}$ $\mu_{
m h}$ Bayes' theorem [2][3][4][5][6][7][8][9][10][11][12] $p(\theta | Data^{CMS}) \propto L(Data^{CMS} | \theta) \Pi(\theta)$

Samuel Bein; ICHEP 2016

Probability density pre-CMS results $\mathcal{B}(\mathbf{b} \to \mathbf{s}\gamma) \quad \alpha_s \quad \mathbf{B}_s \to \mu\mu$ $m_{
m t}$ $\mu_{
m h}$ Bayes' theorem [2][3][4][5][6][7][8][9][10][11][12] $p(\theta | Data^{CMS}) \propto L(Data^{CMS} | \theta) \Pi(\theta)$ H_{T} m_{T2} n_{ℓ} n_{jets} $E_{\mathrm{T}}^{\mathrm{miss}}$ b-jets $\tilde{\mathrm{t}}$ Monojet

Why this procedure?

Two reasons for Bayesian approach:

1. Result can be interpreted as a probability density for hypotheses of mass patterns

2. We sample interesting regions of the pMSSM subspace with a higher density

Gluino mass

Squark Mass

Lightest colored particle

LSP mass

Processes

Samuel Bein; ICHEP 2016

Samuel Bein; ICHEP 2016

Process with the highest significance

$\Delta m(\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}) \sim 3 \text{ GeV}$ $m_{\tilde{\chi}_1^0} \sim 200 \text{ GeV}$

8 TeV signed significance: +3.6

Samuel Bein; ICHEP 2016

14

pMSSM interpretation of

2nd lightest surviving gluino

Scenario 1

g̃ mass [TeV]

Samuel Bein; ICHEP 2016

Lightest surviving gluino

Samuel Bein; ICHEP 2016

Observables

 P_1

 \boldsymbol{q}

Samuel Bein; ICHEP 2016

 $ilde{\chi}^0_1$

Z W

Summary

- Much knowledge has been gained about the possible masses of gluinos, light-flavor squarks
- Gluinos as light as 600 GeV survived Run 1 due to compressed spectra, intermediate sparticle decays
- Second-most prevalent diagram predicts events that fail typical supersymmetry triggers
- Low-HT, monojet+X event signatures describe many surviving scenarios
 - [1] Vardan Khachatryan et al. Phenomenological MSSM interpretation of CMS searches in pp collisions at sqrt(s) = 7 and 8 TeV. 2016.

Samuel Bein; ICHEP 2016

References

- Vardan Khachatryan et al. Phenomenological MSSM interpretation of CMS searches in pp collisions at sqrt(s) = 7 and 8 TeV. 2016.
- [2] Y. Amhis et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014. 2014.
- [3] Vardan Khachatryan et al. Observation of the rare B⁰_s → μ⁺μ⁻ decay from the combined analysis of CMS and LHCb data. Nature, 522:68, 2015.
- [4] Kaoru Hagiwara, Ruofan Liao, Alan D. Martin, Daisuke Nomura, and Thomas Teubner. (g - 2)_μ and α(M²_Z) re-evaluated using new precise data. J.Phys., G38:085003, 2011.
- [5] Particle Data Group. Review of Particle Physics. Chin. Phys. C, 38:090001, 2014.
- [6] Tevatron Electroweak Working Group, CDF and D0 Collaborations. Combination of CDF and D0 results on the mass of the top quark using up to 8.7 fb⁻¹ at the Tevatron. 2013.
- [7] Jeremy Bernon, Beranger Dumont, and Sabine Kraml. Status of Higgs couplings after run 1 of the LHC. Phys. Rev. D, 90:071301, 2014.
- [8] Jeremy Bernon and Beranger Dumont. Lilith: a tool for constraining new physics from Higgs measurements. Eur. Phys. J. C, 75(9):440, 2015.
- [9] Joint LEP2 SUSY Working Group, the Aleph, Delphi, L3 and Opal Collaborations.
- [10] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. MicrOMEGAs: A program for calculating the relic density in the MSSM. *Comput. Phys. Commun.*, 149:103, 2002.

Samuel Bein; ICHEP 2016

pMSSM interpretation of CMS searches

24

- References
- [11] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. micrOMEGAs: Version 1.3. Comput. Phys. Commun., 174:577, 2006.
- [12] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov. Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun., 180:747, 2009.
- [13] Serguei Chatrchyan et al. Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s = 7 TeV. Phys. Rev. Lett., 109:171803, 2012.
- [14] Serguei Chatrchyan et al. Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV. Phys. Rev. D, 86:072010, 2012.
- [15] Serguei Chatrchyan et al. Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at √s = 7 TeV. JHEP, 11:147, 2012.
- [16] Serguei Chatrchyan et al. Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s = 8 TeV. JHEP, 06:055, 2014.
- [17] Serguei Chatrchyan et al. Search for supersymmetry in hadronic final states using MT2 in pp collisions at √s = 7 TeV. JHEP, 10:018, 2012.
- [18] Serguei Chatrchyan et al. Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV. Phys. Lett. B, 725:243, 2013.
- [19] Vardan Khachatryan et al. Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at √s = 8 TeV. Eur. Phys. J. C, 75:235, 2015.

Samuel Bein; ICHEP 2016

References

- [20] Vardan Khachatryan et al. Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at √s = 8 TeV. JHEP, 06:116, 2015.
- [21] Vardan Khachatryan et al. Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at √s = 8 TeV. JHEP, 04:124, 2015.

Backup (assumptions)

A realization of the R-parity conserving MSSM with

- *no new sources of CP violation
- *no flavor changing neutral currents
- *1st and 2nd generation squarks are degenerate
- *lightest supersymmetric particle is the neutralino

Backup

i	Observable	Constraint	Likelihood function	
	$\mu_j(heta)$	$D_j^{ m preCMS}$	$L(D_j^{\mathrm{preCMS}} \mu_j(\theta))$	
1	$BR(b \rightarrow s\gamma)$ [28, 29]	$(3.55 \pm 0.23^{\text{stat}} \pm 0.24^{\text{th}} \pm 0.09^{\text{sys}}) \times 10^{-4}$	Gaussian	
2a	$BR(B_s \to \mu\mu)$ [30]	observed CLs curve from [30]	d(1-CLs)/dx	
2b	$BR(B_s \to \mu\mu)$ [31]	$3.2^{+1.5}_{-1.2} \times 10^{-9}$	2-sided Gaussian	
3	$R(B_u \to \tau \nu)[32]$	1.63 ± 0.54	Gaussian	
4	Δa_{μ} [33]	$(26.1 \pm 8.0^{\text{exp}} \pm 10.0^{\text{th}}) \times 10^{-10}$	Gaussian	
5	m_t [34]	$173.3 \pm 0.5^{\text{stat}} \pm 1.3^{\text{sys}}$ (GeV	Gaussian	
6	$m_b(m_b)$ [32]	$4.19^{+0.18}_{-0.06}~{ m GeV}$	Two-sided Gaussian	
7	$\alpha_s(M_Z)$ [32]	0.1184 ± 0.0007	Gaussian	
8a	m_h	pre-LHC: $m_h^{low} = 112$	1 if $m_h \ge m_h^{low}$	
			0 if $m_h < m_h^{low}$	
8b	m_h	LHC: $m_h^{low} = 120, \ m_h^{up} = 130$	1 if $m_h^{low} \le m_h \le m_h^{up}$	
			0 if $m_h < m_h^{low}$ or $m_h > m_h^{up}$	
9	sparticle	LEP [35]	1 if allowed	
	masses	(via micrOMEGAs [24])	0 if excluded	
10	prompt $\tilde{\chi}_1^{\pm}$	$c au(ilde{\chi}_1^{\pm}) < 10 \ \mathrm{mm}$	1 if allowed	
			0 if excluded	

Backup

Analysis	\sqrt{s} [TeV]	L [fb ⁻¹]
Hadronic HT + MHT search	7	4.98
Hadronic HT + MET + <i>b</i> -jets search	7	4.98
Leptonic search for EW prod. of $\tilde{\chi}^0$, $\tilde{\chi}^{\pm}$, \tilde{l}	7	4.98
Hadronic HT + MHT search	8	19.5
Hadronic M_{T2} search	8	19.5
Hadronic HT + MET + <i>b</i> -jets search	8	19.4
Monojet searches	8	19.7
Hadronic stop search	8	19.4
Opposite sign di-lepton (OS ll) search	8	19.4
(count experiment only)		
Like-sign di-leptoin (LS ll) search	8	19.5
(only channels w/o 3rd lepton veto)		
Leptonic search for EW prod. of $\tilde{\chi}^0, \tilde{\chi}^{\pm}, \tilde{l}$	8	19.5
(only ss, 3l, and 4l channels)		<

Non-excluded points, properties

Samuel Bein; ICHEP 2016

Non-excluded points, properties

Samuel Bein; ICHEP 2016

³¹

Non-excluded points, properties

Samuel Bein; ICHEP 2016