Fermilab **ENERGY** Office of Science

Progress in the Search for Dark Matter Using Upward-going Muons in NOvA

A. Tsaris, On Behalf of the NOvA Collaboration
38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS
August 3-10, 2016
CHICAGO, IL

NOvA Overview

NOvA (NuMI Off-axis v_e Appearance) is a long baseline neutrino oscillation experiment that uses two functionally identical detectors to measure:

 \mathbf{v}_{e} appearence $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

 \mathbf{v}_{μ} disappearance $P(\nu_{\mu} \rightarrow \nu_{\mu})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$

15.6 m

😤 Fermilab

4.3 m

NOvA Overview

NOvA (NuMI Off-axis v_e Appearance) is a long baseline neutrino oscillation experiment that uses two functionally identical detectors to measure:

 \mathbf{v}_{e} appearence $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

See Electron-Neutrino Appearance talk by Jianming Bian (6 Aug 2016, 14:20)

 \mathbf{v}_{μ} disappearance $P(\nu_{\mu} \rightarrow \nu_{\mu})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$ See Muon-Neutrino Disappearance talk by Keith Matera(6 Aug 2016, 14:00)

15.6 m

» Search for Dark Matter using upward going muons.

The NOvA Far Detector

- Detector on the surface $\boldsymbol{>}$
- 3 meter earth equivalent overburden. **>>**
- Highly segmented low Z tracking calorimeter. **>>**
- Liquid scintillator with wave shifting fiber readout. **>>**
- 65% active by volume **>>**
- Detection with avalanche photo diodes. **>>**

Building block of NOvA

To 1 APD pixel

15.8 m

The NOvA Far Detector

- Detector on the surface $\boldsymbol{>}$
- 3 meter earth equivalent overburden. **>>**
- Highly segmented low Z tracking calorimeter. **>>**
- Liquid scintillator with wave shifting fiber readout. **>>**
- 65% active by volume **>>**
- Detection with avalanche photo diodes. **>>**
- Alternating X/Y planar geometry. **>>**

6 cm 4 cm

WIMP Detection using Upward-going Muons

WIMP Candidate

- Γ(capture)
- Γ(annihilation)
- σ(scatter)

Positrons

•

-

Electrons

Neutrinos

Antiprotons

+

Protons

• v interactions

Results in ejection of high energy neutrino

Detect CC Interaction Correlated to Solar Position

Low-energy photons

mmm

Medium-energy aamma rays

mm

Decay process

Quarks

Leptons

Bosons

Supersymmetric

neutralinos

Limits on the Spin-Dependent Interaction Cross Section

NOvA is unique:

- » Relative low energy muon threshold.
- » Large for its excellent granularity.
- Previous measurements primarily looked with Cherenkov detectors.
- » The NOvA technology is different (liquid scintillator).
- » NOvA may have sensitivity in unexplored regions of phase space.

NOvA may be sensitive here! (Mass of DM<20GeV)

Pointing Resolution

- We check the pointing resolution by point to the moon
- Tracks within 5 deg. from the position of the Moon were selected.
- Tracks with at least 15 m length.
- Performed time slewing and look elsewhere analysis to verify signal significance.

Procedure followed by MINOS observation arXiv:1008.1719 [hep-ex]

From moon shadow measurement estimate pointing resolution better than 1.2 deg. (dominated by Coulomb scattering and magnetic deflection)

The Upward-going Muon Trigger

- » Two upward-going muon triggers are running since December 2014 base on timing:
 - » Through-going (1, 2, 3): long tracks that appear to be upward going.
 - » Contained (4): shorter tracks that appear to be upward going and pass some simple containment requirements.

A First Look at Data from the NOVA Upward-Going Muon Trigger arXiv:1511.00155 [hep-ex]

~500 days of live time have been collected. For this analysis 275 days of live time were used from the through-going sample.

The Upward-going Muon Trigger

- » Two upward-going muon triggers are running since December 2014 base on timing:
 - » Through-going (1, 2, 3): long tracks that appear to be upward going.
 - » Contained (4): shorter tracks that appear to be upward going and pass some simple containment requirements.

A First Look at Data from the NOVA Upward-Going Muon Trigger arXiv:1511.00155 [hep-ex]

~500 days of live time have been collected. For this analysis 275 days of live time were used from the through-going sample.

» Note that by firing at 1Hz, this trigger already reduces the cosmic background by a factor of 10⁵ (cosmic trigger fires at ~100 kHz).

🛟 Fermilab

The Upward-going Muon Trigger: Log Likelihood Ratio (LLR)

The LLR is calculated based on the upwardgoing and downward-going hypothesis:

- » Three linear fits to the expected v/s observed times of all hits in the track.
 - » With unconstrained slope.
 - Independently for each hypothesis (up, down)
- » Form LLR based on the chisquare probability:

$$LLR = \ln\left(\frac{Prob_{UP}}{Prob_{DOWN}}\right)$$

The time resolution in the NOvA FD is ~10 ns for high energy hits.

(See Poster 1322 by C. Principato).

hypothesis (assuming $\beta=1$)

LLR is Very Effective for Long Tracks

NOvA Simulation

The LLR distributions for cosmics (blue) and WIMPSIM (red) MC samples.

Implementation of an upward-going muon trigger for indirect dark matter searches at the NOvA far detector <u>arXiv:1510.07571v1</u> [physics.ins-det]

Fermilab

Analysis Regions and Blinding

- » We blind the samples based on the day/night altitude of the sun.
- » No blinding is performed on the track angle.
- Measure the background during the Day and collect the signal during the Night

Day Vs Night Consistency (Cosmic Events)

Sanity Check: Detector observables are stable between the day and the night.

NOvA Preliminary

Fermilab

Day Vs Night Consistency (Cosmic Events)

The shape of the day/night distributions for track angle to sun position match to within 2%. This deviation is taken as a systematic uncertainty in the full analysis.

Data Driven Background Estimates (Elevation Angle)

- Cosmic-ray muons traveling slightly upwards can be scattered or penetrate though the thin layer of the Earth.
- The fall-off at steeper angles is due to shielding from the Earth.

μ

 θ_{ele}

Data Driven Background Estimates (Elevation Angle)

» The signal efficiency is ~30%

- For this analysis the live time exposure is:
 - » Above horizon: 77 days
 - » Below horizon: 147 days

» Twilight: 54 days

Events passed selections: **33 above horizon. Expect 23 for twilight we** found 24. When unblinding the

signal region we expect 63 background events

7 Fermilab

Every day ~ 10^{10} events go through the detector and we are looking for < 1 per day

Upward-going Muon Candidate

Summary and Future Plans

- Main goal of this analysis is to look for an excess of events coming from the sun.
- We can point to celestial objects with the NOvA detector:
 - Preliminary shape of deficit yields Gaussian pointing resolution ~1.2 deg.
- We can use the day sample as a control region to measure the background during the day
 - The several observables that were checked showed that their shape is consistent in the day and night sample.
- Continue the MC studies to predict the number of events in the signal region prior of unblinding the night sample.
- Further understanding of the background by looking the full day sample collected by the upward-going muon trigger.
- Set Limits for the WIMP detection.

🛠 Fermilab

NOvA Posters

- » H. Duyang: Neutrino Induced Neutral Current Coherent π⁰ Production in The NOvA Near Detector.
- » F. Jediny: Looking amongst the neutrinos for lightweight dark matter in the NOvA Near Detector.
- » J. Lozier: Extrapolation, Systematics and Results for the NOvA Disappearance Analysis.
- » K. Maan: Constraints on the Neutrino Flux in NOvA using the Near Detector Data.
- » E. Niner: Systematic Uncertainties in the NOvA Electron Neutrino Appearance Analysis.
- » C. Principato: Searching for Dark Matter using the NOvA upward-going muon trigger.
- » K. Sachdev: Cross-section Measurements with the NOvA ND.
- » A. Radovic: Neutrino Identification with a Convolutional Neural Network in the NOvA Detectors.
- » P. Singh: Attenuation Calibration of the NOvA Detectors.
- » E. Song: Search for Magnetic Monopoles with the NOvA Far Detector.
- » S. Yang: Looking for Sterile Neutrinos with NOvA
- » V. Bychkov and L. Corwin: NOvA Muon Neutrino Selection
- » N. Yadav: Cosmic Electromagnetic Showers in NOvA Detector

Far Detector 550µs NOvA event

²⁴ ICHEP 2016 Chicago USA

Zoomed Far Detector 10µs NOvA Event

²⁵ ICHEP 2016 Chicago USA

Effect of the Selection Criteria in the Cosmic Sample

Effect of the cuts between day night in the cosmic sample The selection criteria do not bias the day/night sample.

26 ICHEP 2016 Chicago USA

A. Tsaris

NOvA Preliminary

Selection Criteria used in the Upward-going Muon Trigger

Variable	Cut Value	Description
TrackLen	$500.0~{ m cm}$	3 dimensional reconstructed track length
TrackHitsXY	60	total number of hits associated with 3D track
TrackHitsX	15	number of hits associated with XZ projection of track
TrackHitsY	15	number of hits associated with YZ projection of track
dX	15	Track cell length in XZ view
dY	$3 \mathrm{m}$	Track cell length in yz view
dZ	$3 \mathrm{m}$	Track plane length
R2X	0.99	Coefficient of determination for fit in XZ view
R2Y	0.99	Coefficient of determination for fit in YZ view
Chi2	2.0	Fit χ^2/NDF of time distribution
LLR	3.0	LLR of time distribution

Table 1: Selection criteria used by the upward-going through-going muon trigger. These cuts are designed to select muon tracks with lengths and numbers of hits sufficient to compute reliable likelihood values for track direction.

Fermilab