

Recent Results from SuperCDMS Soudan

Alan E. Robinson **ICHEP 2016** 6 August 2016

SuperCDMS Collaboration

California Inst. of Tech.

CNRS-LPN*

Durham University

FNAL

NISER

NIST*

Northwestern U.

PNNL

Queen's University

SLAC

Santa Clara U.

South Dakota SM&T

Stanford University

Texas A&M University

U. British Columbia

U. California, Berkeley

U. Colorado Denver

U. Florida

U. Minnesota

U. South Dakota

CDMS Operations at Soudan, MN (2003–2015)

SuperCDMS Soudan Data

Operated October 2012 to November 2015

- Published and in preparation dark matter limits:
 - CDMSlite
 - Low-threshold analysis
 - High-threshold analysis
 - Lightly ionizing particles search
 - Improved analyses and additional exposures
- Background studies:
 - iZIP surface background rejection
 - Cosmogenic tritium production
- Calibration and efficiency studies:
 - Effective field theory sensitivity
 - Photoneutron recoil energy scale calibration

Dark Matter Direct Detection

 CDMS combines high electron recoil / nuclear recoil discrimination AND low threshold.

- Dark matter signal:
 ~10 keV nuclear recoil (NR)
- Penetrating γ and β: Electron recoil (ER) background
- Ionization / Heat / scintillation ratios differ for NR vs. ER

SuperCDMS Soudan Detectors

Ge iZIP (interleaved Z-sensitive Ionization and Phonon sensors)

- Measure heat and ionization
 - Athermal phonons measured with Transition Edge Sensors (TES)
 - e⁻/h⁺ pairs drifted across ±2 V bias.
 - 15 detectors, 0.6 kg each at ~50 mK

- Surface Events
 - Nuclear recoils from radon.
 - lonization from electron recoils trapped at surfaces.
- Radial discrimination

Interleaved electrodes allow charge symmetry cut

Cut efficiency calibration using ²¹⁰Pb source

Electric drift field simulation

< 1.3×10⁻⁵ surface event leakage

iZIP Low Threshold Analysis

Tuned for low energy efficiency using first 577 kg·days of exposure – PRL 112 241302 (2014)

Surface events rejected using phonon radial and z

information.

 Blinded analysis using Boosted Decision Trees.

iZIP Low Threshold Analysis

Rules out CoGENT WIMP interpretation.

Looking to the Future – CDMSlite mode

Use phonons as information carriers

- Average energy of information carriers
 - LXe: ~70 eV per S1 photoelectron
 - Ge: 3 eV per electron/hole pair or ~0.001 eV per phonon

Phonon energy = $E_{heat} + n_{eh} e\Delta V$

CDMSlite

PRL **116** 071301 (2016)

- Thresholds at 75 eV_{ee} (period 1) and 56 eV_{ee} (period 2) limited by low-frequency vibrations.
- Fiducial cut using phonon pulse shape and radial cuts.

CDMSlite

- New results PRL 116 071301 (2016)
 - World leading low-mass WIMP limits.
- Final data set with lower hardware threshold under analysis.

Tritium Backgrounds

Critical background for SuperCDMS SNOLAB (see Lauren's talk)

- EDELWEISS measured 82±21 atoms/kg/day production at SL
- Consistent with CDMSlite background after multiyear surface exposure.

Publication in preparation.

Nuclear Recoil Energy Scale

Use neutron scattering to simulate dark matter signal

New energy regime w/ ultralow threshold CDMSlite detectors

Onto SuperCDMS SNOLAB

Aiming for world's best sensitivity for <10 GeV WIMPs

- Using Soudan experience to understand
 - Thresholds
 - Calibration
 - Backgrounds
 - Technical challenges
- See Lauren Hsu's talk

SuperCDMS Collaboration

California Inst. of Tech.

CNRS-LPN*

Durham University

FNAL

NISER

NIST*

Northwestern U.

PNNL

Queen's University

SLAC

Santa Clara U.

South Dakota SM&T

Stanford University

Texas A&M University

U. British Columbia

U. California, Berkeley

U. Colorado Denver

U. Florida

U. Minnesota

U. South Dakota

Extra Slides

Phonon Pulse Shape

Fast (diffusive) and slow (ballistic) phonon absorption

Effect of deviations from Lindhard

Plot of sensitivity vs threshold

Current status on ionization yields

Note sensitivities on previous slide assumed 40 eV ionization threshold and that ionization yield follows Lindhard down to that point.

In addition to how much the yield differs from Lindhard, at some point we expect a physical turnoff in ionization yield. Where this cutoff is can have large implications.

Silicon

A. Chavarria, LowECal workshop, Chicago (2015)