Charmonium and bottomonium spectral functions and the heavy quark diffusion coefficient from lattice QCD

Hiroshi Ohno^{1,2}

in collaboration with

H.-T. Ding³, O. Kaczmarek⁴, Swagato Mukherjee² and H.-T. Shu³

¹CCS, University of Tsukuba, ²Brookhaven National Laboratory, ³Central China Normal University, ⁴Bielefeld University

ICHEP2016 Sheraton Grand Hotel, Chicago, USA, August 4, 2016

Motivation

- Quarkonium spectral functions (SPFs)
 - have all information about in-medium properties of quarkonia

Quarkonium correlation and spectral functions

Heavy quark diffusion coefficient

$$\chi_{00} : \text{Quark number susceptibility} \\ \rho_{00}^{V}(\omega) = 2\pi\chi_{00}\omega\delta(\omega) \implies G_{00}^{V}(\tau) = T\chi_{00}$$

D is related to the vector spectral function around zero frequency.

H. Ohno ICHEP2016

Investigating spectral functions

- Computing SPF → III-posed problem
 - # of data points of a correlator is O(10) while a SPF needs
 O(1000) data points.
 - In general, simple χ^2 fitting does not work!
- Indirect ways
 - Spatial correlator \rightarrow Screening mass
 - Reconstructed correlator
- Several ways to reconstruct SPF
 - Maximum entropy method (MEM) M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. Nucl. Phys. 46 (2001) 459-508
 - A new Bayesian method Y. Burnier and A. Rothkopf, PRL 111 (2013) 18, 182003
 - Stochastic methods
- A. S. Mishchenko et al., Phys. Rev. B62, 6317 (2000) K.S.D. Beach, arXiv:cond-mat/0403055 S. Fuchs *et al.*, PRE81, 056701 (2010)

Data quality is also important!

H. Ohno ICHEP2016

Recent lattice studies on quarkonium melting

- Charmonia
 - Several studies both in quenched QCD and with dynamical quarks
 - Using MEM
 - Dissociation temperatures are still not conclusive

J/ Ψ seems to survive up to 1.5 $T_{\rm c}$

P-wave states may melt just above T_c

- Bottomonia
 - NRQCD
 - Using MEM or the new Bayesian method
 - Y(1S) seems to survive at least up to $2T_c$
 - Different conclusions on melting of a P-wave state with different methods.

G. Aarts et al., JHEP1407(2014)097

S. Kim et al., PhysRevD.91.054511

H. Ohno ICHEP2016

Recent lattice studies on heavy quark diffusion coefficient

H.-T. Ding et al., PRD 86 (2012) 014509

Perturbative estimate

 $2\pi DT \approx 71.2$ in LO

Heavy quark effective theory, continuum limit, using theoretically motivated fits $_{T \sim 1.5 \ T_c}$ $\kappa/T^3 = 1.8 - 3.4$ BGM 3a 2βb $D = \frac{2T^2}{2T^2}$ 2βa model 2αb 2αa $\rightarrow 2\pi DT \approx 3.7 - 7.0$ 1_{βb} 1_{Ba} 1 ab strategy (i) o strategy (ii) $1\alpha a$ κ / T^3

A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus and HO, PRD 92 (2015) no.11, 116003

• Strong coupling limit $2\pi DT \approx 1$

Kovtun, Son and Starinets, JHEP 0310 (2004) 064

2πDT ≈ 8.4 in NLO

H. Ohno

ICHEP2016

Caron-Hout and Moore, PRL 100 (2008) 052301

Moore and Teaney, PRD 71 (2005) 064904

It is important to crosscheck previous results with more precise SPFs given on larger and finer lattice and by different methods.

Charmonium and bottomonium spectral functions and
the heavy quark diffusion coefficient from lattice QCD

This study

• Finite temperature lattice QCD simulations

 – large and fine isotropic lattices 		N_{σ}	$a [\mathrm{fm}]$	N_{τ}	T/T_c
 quenched approximation 		96	0.0184	$\frac{48}{32}$	$\begin{array}{c} 0.75 \\ 1.1 \end{array}$
(no dynamical quark)				$\frac{28}{24}$	$1.25 \\ 1.5$
 both charm and bottom quarks 				16	2.2
- vector (V) channel		192	0.00905	96	0.75
				64 56	1.1 1.95
					1.20 1.5

- Investigating quarkonium SPFs (and heavy quark diffusion)
 - indirectly with the correlation functions
 - directly by using both MEM and stochastic methods

Screening mass

If there is a lowest lying bound state

$$M_{\rm scr} = M$$

High T limit (free case) Quark mass $M_{\rm scr} = 2 \sqrt{(\pi T)^2 + m_q^2}$

H. Ohno ICHEP2016

Screening mass for V channel

$M_{\rm scr}$ increases monotonically as increasing temperature. Small temperature dependence for bottom.

H. Ohno ICHEP2016

Reconstructed correlator

$$G_{\rm rec}(\tau,T;T') \equiv \int_{0}^{\infty} d\omega \rho(\omega,T') K(\omega,\tau,T)$$

$$\frac{G(\tau,T)}{G_{\rm rec}(\tau,T;T')} = \frac{\int_{0}^{\infty} d\omega \rho(\omega,T') K(\omega,\tau,T)}{\int_{0}^{\infty} d\omega \rho(\omega,T') K(\omega,\tau,T)} \text{ equals to unity at all } \tau$$
if the spectral function doesn't change at each temperature S. Datta *et al.*, PRD 69 (2004) 094507
$$\frac{\cosh[\omega(\tau - N_{\tau}/2)]}{\sinh[\omega N_{\tau}/2]} = \sum_{\tau'=\tau;\Delta\tau'=N_{\tau}}^{N_{\tau}'-N_{\tau}+\tau} \frac{\cosh[\omega(\tau' - N_{\tau}'/2)]}{\sinh[\omega N_{\tau}'/2]}$$

$$T = 1/(N_{\tau}a) \qquad N_{\tau}' = mN_{\tau} \qquad m = 1, 2, 3, \cdots$$

$$G_{\rm rec}(\tau,T;T') = \sum_{\tau'=\tilde{\tau};\Delta\tau'=N_{\tau}}^{N_{\tau}'-N_{\tau}+\tau} G(\tau',T')$$
H.-T. Ding *et al.*, PRD 86 (2012) 014509

H. Ohno ICHEP2016

Reconstructed correlator for V channel

 $G(\tau, T)/G_{rec}(\tau, T; T')$

There is strong enhancement at large τ , especially for charm.

Large $\tau \leftrightarrow$ Small ω

→ This strong modification might be related to the transport peak.

H. Ohno ICHEP2016

Estimating the heavy quark diffusion coefficient

 $G(\tau,T) - G_{rec}(\tau,T;T)$

at $\tau T = \frac{1}{2}$.

ICHEP2016

the heavy quark diffusion coefficient from lattice QCD

Estimating the heavy quark diffusion coefficient (cont'd)

Charm: 2π*TD* ≈ 0.6−1 (β = 7.192), 2π*TD* ≈ 0.5−0.8 (β = 7.793) at 1.5 T_c 2π*TD* ≈ 0.6−0.8 (β = 7.192) at 2.2 T_c

Bottom: no solution for M > 4 GeV

H. Ohno ICHEP2016

Reconstruction of SPFs : methods

MEM

Most likely solution

$$\max P[A|\bar{G}] \leftrightarrow \min F \leftrightarrow \frac{\delta F}{\delta A} = 0$$
 where

$$P[A|\bar{G}] \propto e^{-F} \quad F \equiv \chi^2/2 - \alpha S$$

Prior information

$$S \equiv -\int d\omega \ A(\omega) \ln\left(\frac{A(\omega)}{D(\omega)}\right)$$

• Eliminating α $P[\alpha|\bar{G}] \propto P[\alpha] \int \mathcal{D}A \ e^{-F[A]}$ where $P[\alpha] = 1, \ 1/\alpha$

$$\langle A(\omega) \rangle = \int d\alpha A_{\alpha}(\omega) P[\alpha|\bar{G}]$$

Stochastic methods

• **Most likely solution** $\mathcal{D}'n \equiv \mathcal{D}n \Theta[n]\delta\left(\int dx \ n(x) - \bar{G}(\tau_0)\right)$

$$\langle n(x) \rangle_{\alpha} = \int \mathcal{D}' n \ n(x) e^{-\chi^2/2\alpha} \quad \text{for } n(x) \equiv \frac{A(\phi^{-1}(x))}{D(\phi^{-1}(x))}$$

SAI (Stochastic Analytical Inference)

S. Fuchs *et al.*, PRE81, 056701 (2010) HO, POS LATTICE 2015, 175 (2016)

Prior information

$$x \equiv \phi(\omega) = \frac{1}{N} \int_{-\infty}^{\omega} d\omega' D(\omega')$$

• Basis δ functions

• Eliminating α $P[n|\bar{G}] \propto P[\alpha] \int \mathcal{D}' n \ e^{-\chi^2[n]/2\alpha}$ $\Rightarrow \langle \langle n(x) \rangle \rangle = \int d\alpha \langle n(x) \rangle_{\alpha} P[n|\bar{G}]$

SOM (Stochastic Optimization Method)

A. S. Mishchenko *et al.,* PRB62, 6317 (2000) H.-T. Shu *et al,* PoS LATTICE 2015, 180 (2016)

Prior information

None ($x = \omega$)

dose not rely on DM!

• Basis Boxes

• Eliminating α Choosing α at a critical point of $\langle \chi^2 \rangle_{\alpha}$

H. Ohno ICHEP2016

Reconstruction of SPFs : setup

- Using the finer lattice (β =7.793)
- Only charmonium SPFs at 0.75T_c and 1.5T_c have been analyzed so far
- With both MEM and the stochastic methods
- Various default models have been tested
 - $-\omega^2$
 - Free SPF
 - A resonance peak at several locations
 - Transport peak

Charmonium SPF for V channel at 0.75*T*_c

Default model and method dependence is weak. There is a stable J/Ψ peak.

H. Ohno ICHEP2016

Charmonium SPF for V channel at 1.5*T*_c

Melting of J/ Ψ is not conclusive so far, although most of the cases in our analysis suggest no clear J/ Ψ peak. There seems to be an upper bound of $2\pi TD$, which is 1.5—2 in this study, while a lower bound is not clear.

Η.	Ohno
ICH	EP2016

Summary & outlook

- We investigated vector charmonium and bottomonium SPFs on very large and fine quenched lattices in both indirect and direct ways.
- Screening mass results suggest that charmonium states start having thermal effects just above T_c while temperature dependence of bottomonia is relatively small.
- The heavy quark diffusion coefficient was roughly estimated from difference between ordinary and reconstructed correlators, where 2πTD is around 1 for charm at 1.5T_c and 2.2T_c.
- Charmonium SPFs for the vector channel at $0.75T_c$ and $1.5T_c$ were reconstructed with both MEM and stochastic methods.
 - Both MEM and the stochastic methods gave almost DM-independent stable SPFs having a clear J/ Ψ peak at 0.75 T_c .
 - Most of the results suggest that J/ Ψ may be melted around 1.5 T_c but more detailed study is needed to conclude.
 - So far we observed an upper bound of $2\pi TD$, which is 1.5-2 at $1.5T_c$ in this preliminary study.
- More studies on SPF reconstruction are needed.
 - further checks of the DM-dependence and other systematic uncertainties
 - analysis of the temperature and quark mass dependence as well as other channels
 - continuum extrapolation

H. Ohno ICHEP2016

End

Backup slides

Stochastic method: basic idea

For given α (fictitious temperature, regularization parameter),

1. generate SPFs stochastically

ICHEP2016

2. average over all possible spectra

the heavy quark diffusion coefficient from lattice QCD

Stochastic method: basis

Update schemes which change the number of the basis are also possible.

H. Ohno ICHEP2016

Stochastic method: default model

K.S.D. Beach, arXiv:cond-mat/0403055

$$x \equiv \phi(\omega) = \frac{1}{N} \int_{-\infty}^{\omega} d\omega' D(\omega')$$

$$D(\omega) : \text{Default model (prior information)}$$

$$G(\tau) = 0$$

$$n(z)$$

$$\bar{G}(\tau_0)$$

$$\langle A(\omega) \rangle$$

$$\begin{aligned} G(\tau) &= \int d\omega \ A(\omega) \tilde{K}(\omega, \tau) \\ &= \int dx \ n(x) \tilde{K}(\phi^{-1}(x), \tau) \\ n(x) &\equiv \frac{A(\phi^{-1}(x))}{D(\phi^{-1}(x))} \\ \\ \bar{G}(\tau_0) - \int dx \ n(x) &= 0 \\ A(\omega) \rangle_{\alpha} &= \langle n(\phi(\omega)) \rangle_{\alpha} D(\omega) \end{aligned}$$

H. Ohno ICHEP2016

Stochastic method: comparison with MEM(1)

H. Ohno ICHEP2016

Stochastic method: comparison with MEM(2)

S. Fuchs et al., PRE81, 056701 (2010)

$$\mathsf{MEM}$$

$$P[A|\bar{G}] = \frac{P[\bar{G}|A]P[A]}{P[\bar{G}]}$$

- Prior probability $P[A] \propto \exp(\alpha S)$
- Likelihood function $P[ar{G}|A] \propto \exp\left(-\chi^2/2
 ight)$
- Posterior probability $P[A|\bar{G}] \propto e^{-F}$

$$\square \longrightarrow \max P[A|\bar{G}] \leftrightarrow \min F \leftrightarrow \frac{\delta F}{\delta A} = 0$$

Stochastic method $P[n|\bar{G}] = \frac{P[\bar{G}|n]P[n]}{P[\bar{G}]}$

- Prior probability $P[n] \propto \Theta[n] \delta\left(\int dx \ n(x) - \bar{G}(\tau_0)\right)$
- Likelihood function $P[\bar{G}|n] \propto \exp\left(-\chi^2/2\alpha\right)$
- Posterior probability $P[n|\bar{G}] = \Theta[n]\delta\left(\int dx \ n(x) - \bar{G}(\tau_0)\right)e^{-\chi^2/2\alpha}$ $\Longrightarrow \ \langle n(x)\rangle_{\alpha} = \int \mathcal{D}n \ n(x)P[n|\bar{G}]$

H. Ohno ICHEP2016

Stochastic method: eliminating α

(a) By using the posterior probability $P[\alpha|\bar{G}]$ $P[\alpha|\overline{G}] \propto P[\alpha] \int DA \ e^{-\chi^2/2\alpha} \quad P[\alpha] = 1, \ 1/\alpha$ Choosing α at the peak location of $P[\alpha|\bar{G}]$ or Taking average $\langle\langle A(\omega)\rangle\rangle \equiv \int d\alpha \ \langle A(\omega)\rangle_{\alpha}P[\alpha|\bar{G}]$

(b) By using the log-log plot of α vs < χ^2 >

Flat region at large α : default model dominant Crossover region: both χ^2 -fitting and the default model are important Flat region at small α : χ^2 -fitting dominant, overfitting

Choosing α at the kink of ln< χ^2 >

K.S.D. Beach, arXiv:cond-mat/0403055

Default models

• Resonance (Res)

$$\rho(\omega) = \frac{\Gamma M}{(\omega^2 - M^2)^2 + M^2 \Gamma^2} \frac{\omega^2}{\pi}$$

$$\Gamma = \Theta(\omega - \omega_0)\gamma_0 \left(1 - \frac{\omega_0^2}{\omega^2}\right)^5$$

• Transport peak (Trans)

$$\rho(\omega) = \frac{\omega\eta}{\omega^2 + \eta^2}$$

• Free Wilson (Free)

 $b^{(1)} = 3$, $b^{(2)} = 1$ for the V channel

H. Ohno ICHEP2016 Charmonium and bottomonium spectral functions and the heavy quark diffusion coefficient from lattice QCD

 $\mathcal{K}^2 + \mathcal{M}^2(m)$

Default model dependence at 0.75T_c (1)

DM = Free, ω^2 , Res1 + Free, Res2 + Free Res1 : peak location ~ J/ Ψ mass Res2 : peak location < J/ Ψ mass

SAI and MEM have weak DM dependence except for $D(\omega) \sim \omega^2$ for MEM.

H. Ohno ICHEP2016

Default model dependence at 0.75T_c (2)

DM = Trans + Free, ω^2 , Trans + Res1 + Free The high ω part is insensitive to the transport peak of DM. The intercept is quite small.

H. Ohno ICHEP2016

Default model dependence at 1.57_c (1)

DM = Free, ω^2 , Trans1 + Res1 + Free, Trans1 + Res2 + Free Trans1 $\rightarrow 2\pi$ TD=1 There is no clear peak around J/ Ψ , except for Trans+Res1+Free DM result for SAI. The intercept is quite small for SAI. ω^2 DM result for MEM has strange behavior.

H. Ohno ICHEP2016

Default model dependence at 1.57_c (2)

DM = Trans(1-4) + Free Trans(1-4) $\rightarrow 2\pi TD \sim 1, 2, 4, 9$ (fixed width) There is no clear peak around J/ Ψ . The intercept seems to have an upper bound. The intercept for SAI $\rightarrow 2\pi TD \sim 1.5$, for MEM $\rightarrow 2\pi TD \sim 2$

H. Ohno ICHEP2016