Warm Dark Matter in Two Higgs Doublet Models
K.S Babu,†,‡ Shreyashi Chakdar†,‡ and R. N Mohapatra§
†Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106
‡Department of Physics, Oklahoma State University, Stillwater, OK 74078,
§Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, MD 20742.

Contact: chakdar@virginia.edu

Abstract
We show that a neutral scalar field σ of two Higgs doublet extensions of the Standard Model incorporating the seesaw mechanism for neutrino masses can be identified as a consistent warm dark matter candidate with a mass of order keV. The relic density of σ is correctly reproduced by virtue of the late decay of a right-handed neutrino N participating in the seesaw mechanism. Constraints from cosmology determine the mass and lifetime of N to be $M_N \sim 25$ GeV - 20 TeV and $\tau_N \sim 10^{-4} - 1$ sec. These models can also explain the 3.5 keV X-ray anomaly in the extra-galactic spectrum that has been recently reported in terms of the decay $\sigma \rightarrow \gamma\gamma$. Future tests of these models at colliders and in astrophysical settings are outlined.

Two Higgs Doublet Model for Warm DM
- The two Higgs doublet fields are denoted as Φ_1 and Φ_2 with a discrete Z_2 symmetry acting only on Φ_2.
- While Φ_1 acquires a vev of 174 GeV, $<\Phi_2> = 0$, Z_2 remains unbroken and the lightest member of the Φ_2 doublet will be stable.
- We identify one of the neutral members of Φ_2 as the WDM with a mass of order keV while neutral scalar and the charged scalar have masses \sim few hundred GeV.
- Three Z_2 even singlet neutrinos, N, are introduced and neutrino masses are generated via the seesaw mechanism.

Electroweak Precision data and Constraints
- The precision EW parameters S, T receive additional contribution from the 2nd Higgs doublet.
- $T = 0.01 \pm 0.12$ and $S = -0.03 \pm 0.10$ are satisfied by charged higgs and pseudo scalars masses in range of 150-200 GeV.

Late decay of RH neutrino N
- One of the heavy RH neutrinos (N) participates in late decay with lifetime of $(10^{-4} - 1)$ sec.
- Such a decay is necessary to dilute the warm DM abundance, which would otherwise be too large.
- If kinematically allowed, N would have 2 body decays into $h\nu; W^\pm e^\mp, Z_\nu$. These decays arise through the $\nu-N$ mixing.
- When $m_N < 80$ GeV, 3 body decays involving virtual W and Z will be dominant.

Relic Abundance of Warm Dark Matter σ
- Since σ has thermal abundance, it turns out that relic abundance today is too large compared to observations.
- This situation is remedied in the model by the late decay of ν_N, the RH neutrino present in the seesaw sector.
- The freeze out temperature is computed to be $T_F \sim 150$ MeV, the relic abundance is given by:

$$\Omega_\sigma = 9.02 \left(\frac{17.25}{g_{eff}} \right) \left(\frac{m_\sigma}{1 \text{ keV}} \right)$$

- Here we have normalized $g_{eff} = 17.25$ appropriate for the freeze out temperature of σ. We see from this Equation that for a keV warm dark matter, Ω_σ is a factor of 34 larger than the observed value of 0.265.

Dilution of σ abundance via late decay of N
- A dilution in the abundance of σ is realized. For this the decay temperature T_F should be above 1 MeV, so that BBN is not affected. The desired range for the lifetime of N is thus $N = (10^{-4} - 1)$ sec.

- Allowed parameter space of the model in the $M_N-\chi_N$ plane is shown. The shaded region corresponds to the decay temperature T_F of N lying in the range 150 MeV-1 MeV. The three solid curves generate the correct dark matter density Ω_0 for three different values of the WDM mass $m_\sigma = 3.5; 7; 15$ keV.
- The Final abundance of σ is computed as:

$$\Omega_\sigma = (0.265) \left(\frac{m_\sigma}{1 \text{ keV}} \right) \left(\frac{7.87}{M_N} \right) \left(\frac{1}{\tau_N} \right) \left(\frac{g_{eff}}{106.75} \right) \left(\frac{17.25}{g_f} \right)$$

- From Eqn we see that the correct relic abundance of σ can be obtained for $M_N \sim 10$ GeV and $\tau_N \sim 1$ sec.
- The mass of N should lie in the range $M_N = 25$ GeV - 20 TeV for the correct abundance of dark matter.

Other Implications of the Model
1. The extra-galactic X-ray anomaly:
- Recently two independent groups have reported the observation of a peak in the extra-galactic X-ray spectrum at 3.55 keV
- Softly breaking the Z_2 symmetry with inducing a vev u in the range $u = (0.03 - 0.09)$ eV can generate the reported signal.
- Decay rate is given by:

$$\Gamma (\sigma \rightarrow \gamma\gamma) = \left(\frac{\alpha}{4\pi} \right)^2 \frac{F_W^2}{W^2} \left(\frac{u^2}{v^2} \right) \frac{g_F m_\sigma^3}{8\sqrt{2}\pi}$$

2. Collider signals
- The charged scalar H^\pm of the model can be pair produced at the LHC via the Drell-Yan process. H^+ will decay into $W^+ + \sigma$.
- Sensitivity for these charged scalars would require 300 fb$^{-1}$ luminosity of LHC running at 14 TeV.
- The pseudoscalar A can be produced in pair with a σ via Z boson exchange. A will then decay into $\sigma + Z$. The Z boson can be tagged by its leptonic decay. Thus the final states will have two leptons and missing energy.

Conclusions
- We have shown that a neutral scalar boson of these 2HDM can have a mass in the keV range and can be a viable warm dark matter candidate.
- The abundance of such a thermal DM is generally much higher than observations; we have proposed a way to dilute this by the late decay of a heavy RH neutrino.
- A consistent picture emerges where the mass of N is in the range 25 GeV to 20 TeV.
- The model has several testable consequences at colliders as well as in astrophysical settings.
- It can also successfully explain the anomalous X-ray signal reported by different groups in the extra-galactic spectrum.

References

Acknowledgements
The Presenter SC would like to thank the Kavli Institute for Theoretical Physics, UCSB where this work was completed. SC was supported by a KITP Graduate Fellowship at that time.