

Observations of Dwarf Galaxies With VERITAS

Benjamin Zitzer For The VERITAS Collaboration

Introduction to VERITAS

- Support From:
 - NSF (USA)
 - DOE (USA)
 - Smithsonian Institution
 - NSERC (Canada)

- Array of four IACTs in Southern AZ, USA
- Employs ~100 Scientists in five countries
- Full Array Operations in Fall 2007
- Upgrades:
 - Move of T1 in Summer 2009
 - Level-2 Trigger upgrade in Fall 2011
 - Camera Upgrade with High-QE PMTs in Summer 2012

VERITAS Performance

- V6: Mid 2012 to Present
- Energy Range: 85 GeV to > 30 TeV
- Energy Resolution: 15-25%

- Sensitivity: 1% Crab in ~25 hrs
- Angular Resolution: <0.1 at 1 TeV (68%)
- Pointing Accuracy: Error < 50 arcsec

γ-rays from Dark Matter Annihilation

All roads (almost) lead to gamma rays!

- Well-motivated theoretically by extensions of the SM of particle physics (SUSY, Kaluza-Klein) by a weakly -interacting massive particle (WIMP)
- WIMP annihilation production of gamma-rays
 - Gamma-ray line from direct annihilation
 - Gamma-ray continuum from hadronization
 - Enhanced near M from internal brem.
 - DM gamma-ray flux:

$$\frac{dF(E,\hat{\mathbf{n}})}{dEd\Omega} = \int d\ell \, \ell^2 \, r(\ell \hat{\mathbf{n}}) \frac{dN_{\gamma}(E)}{dE} \frac{1}{4\pi\ell^2}$$

$$= \frac{\langle \sigma v \rangle}{8\pi M^2} \frac{dN_{\gamma}(E)}{dE} \int d\ell \, \rho^2(\ell \hat{\mathbf{n}})$$
Particle Physics Astrophysics (J factor)

VERITAS Dark Matter Targets

Galactic Center (GC)

- Close By
- Large DM Content
- Astrophysical Backgrounds
- Talk by A. Weinstein

Dwarf Galaxies (DSphs)

- No Astrophysical Backgrounds
- Close By (~10's kpc)
- High M/L

Galaxy Clusters

- Distant
- Large DM Content
- Many are extended
- Astrophysical Background (?)

Fermi Unidentified Objects

Potentially DM Subhalos?

VERITAS Dwarf Galaxy Observations

Dwarf	Live time	$\log_{10} J$	Significance	$F_{-12}^{95\%}$
	[hrs]	$[\text{GeV}^2\text{cm}^{-5}]$	$[\sigma]$	$[10^{-12} \text{cm}^{-2} \text{s}^{-1}]$
Segue 1	92.0	$19.4^{+0.3}_{-0.4}$	0.7	0.34
Ursa Minor	60.4	$18.9^{+0.3}_{-0.2}$	-0.1	0.37
Draco	49.8	18.8 ± 0.1	-1.0	0.15
Boötes	14.0	18.2 ± 0.4	-1.0	0.40
Willman 1	13.7	N/A	-0.6	0.39

- Five dSphs observed by VERITAS between 2007 and 2013
 - Total of 230 hours
 - Deepest exposure on Segue 1: 92 hours
- Crescent-shaped region used for Bg subtraction
- No gamma-ray detection
- Flux upper limits above 300 GeV for each dSph
- J Factors from Geringer-Sameth et al. ApJ, Vol. 801, Issue 2 (2015)

Background Systematics

Use fit to re-weight acceptance, then récalculate alpha & significance

Bright Star Systematics

- Cherenkov shower images are elliptical in IACT cameras
- Optically bright stars have been problematic for IACTs
 - 'Holes' of negative excess in sky maps
 - Eta Leonis in the field of Segue 1, 0.6 deg away
- Standard shower reconstruction uses image moments
- This work uses 2D Elliptical Gaussian LL fit to showers (HFit)
 - Interpolates missing pixels or camera edge uses all pixels
 - Greatly reduces width and depth of holes
 - improved PSF

Red Ellipse: Standard Reconstruction

Blue Ellipse: HFit Reconstruction

Bright Star Systematics

Dark Matter Search/ Limits from Dwarf Galaxies

- Applied to Fermi-LAT data Phys. Rev. D 91, 083535 (2015)
- Each event in each ON region gets a weight based on the energy, theta and dwarf field
 - proportional to probability of event being produced by DM
- Test statistic for detection of DM at a given mass is the sum of weights from all dwarfs
- PDF generated from background from compound Poisson distributions
- PPP4 DM model used for single annihilation spectra
- Limits produced by repeating over several test mass and $\langle \sigma v \rangle$ values
 - Limits on plots where DM hypothesis is rejected at 95% confidence for a given mass

Weight $w = \log\left[1 + \frac{s}{b}\right] \longrightarrow s(\nu, E, \theta) = \frac{dN(\nu, E, \theta)}{dEd\Omega} dE \, 2\pi \sin(\theta) d\theta$ $\frac{dN(E, \hat{\mathbf{n}})}{dEd\Omega} = \int_{E_t} \int_{\Omega_t} dE_t d\Omega_t \frac{dF(E_t, \hat{\mathbf{n}}_t)}{dE_t d\Omega_t} R(E, \hat{\mathbf{n}} | E_t, \hat{\mathbf{n}}_t)$

Particle Physics $\frac{dF(E,\hat{\mathbf{n}})}{dEd\Omega} = \frac{\langle \sigma v \rangle}{8\pi M^2} \frac{dN_{\gamma}(E)}{dE} \frac{dJ(\hat{\mathbf{n}})}{d\Omega}$ Detector Response $R(E,\hat{\mathbf{n}}|E_t,\hat{\mathbf{n}}_t) = \sum_{\mathbf{runs}} \tau A_{\mathrm{eff}}(E_t) \mathrm{PSF}(\hat{\mathbf{n}}|E_t,\hat{\mathbf{n}}_t) D(E|E_t)$

Dark Matter Annihilation Profiles

- J Factors from Geringer-Sameth et al. ApJ, Vol. 801, Issue 2 (2015)
- Up-to-date optical data
- Used Generalized NFW profile to fit 20 dwarfs in a united framework
- Segue 1 is brightest in this work, followed by Ursa Minor, Draco and Bootes
- Evidence of tidal disruption and/or non-equilibrium kinematics in Willman 1

Dark Matter Search from Dwarf Galaxies

Dark Matter Limits

- 216 hours combined limit
 - Willman 1 not used
 - Band represents uncertainty in J factor
 - Substantial improvement over 48 hour Segue 1 result

Dark Matter Expected Limits

Dark Matter Limits – All Channels

Conclusions

- VERITAS Observations of 230 hours of dwarf galaxies
- Combined search and limits using 216 hours from 100 GeV to 100 TeV
- Method utilizing individual event energies and directions
- Paper currently undergoing internal collaboration review and final checks
- Future work:
 - VERITAS has a larger data set with data taken after 2013
 - Improvements from advanced analysis methods boosted decision trees
 - Fermi VERITAS HAWC working group for standardization and combination of DM searches

Backup — Comparison with other Experiments

