The PADME experiment at DAFNE LINAC

Paolo Valente - INFN Roma
The dark matter problem

Several hypothesized solutions

Particle physics is not the only possible solution

However...

Deep roots in strong empirical observations

Paolo Valente - INFN Roma
A new, very weak interaction, connecting the ordinary matter with a (almost) hidden sector (by the smallness of the coupling constant, not by the mass scale)

Not so many possibilities:

- **vector**
 \[\frac{1}{2} \epsilon F_{\mu\nu}^Y F_{\mu\nu} \]

- **Higgs**
 \[\epsilon_h |h|^2 |\phi|^2 \]

- **neutrino**
 \[\epsilon_\nu (hL) \psi \]

- **axion**
 \[\frac{1}{f_a} \alpha F_{\mu\nu} \tilde{F}_{\mu\nu} \]

- **dark photon**

- **dark scalar**

- **sterile neutrino**

- **ALPs**
Dark photon

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the “dark photon" or U-boson or heavy photon (γ' or A’)

- An extra U(1) symmetry is implied in many extensions of the SM, some classes of string theory, etc.

- Appealing explanation of the muon g-2 discrepancy in the 1 MeV – 1 GeV mass range

Paolo Valente - INFN Roma
Dark photon decays: “visible”

- Assume that **no additional lighter state** exists in the dark sector with $m_\chi < m_{A'}/2$
- A' couples to SM particles **through kinetic mixing only** (with **universal coupling εq**)
- For $m_{A'} < 2 m_\mu$ only decays to e^+e^-
Dark photon decays: “invisible”

- If at least one χ state exists in the dark sector with $U(1)$ charge q_U and coupling constant g_U and $m_\chi < m_{A'}/2$, the coupling to the A' will be: $q_U g_U$
- $A' \rightarrow \chi\chi$ will be dominant wrt to the visible decays for $\alpha_D > \alpha$, i.e. for $|q_U g_U| > \varepsilon e$
In any electromagnetic interaction, just replace one γ with A', replacing α with $\varepsilon^2\alpha$.
Dark photon experiments/electrons

- We have to add experiments using meson decays: $\eta, \pi^0 \rightarrow \gamma A'$ with dark photon “visible” decay;
- Or A' coming from dark Higgs decays

Thin target, visible decays

- $e^- Z \rightarrow e^- Z A'$
- $A' \rightarrow e^+ e^-$

(APEX, HPS, A1)

Dump, visible decays

- $e^- Z \rightarrow e^- Z A'$
- $A' \rightarrow e^+ e^-$

(E-137, E-141, E-774, Orsay, ...)

Dump, invisible decays, recoil

- $e^- Z \rightarrow e^- Z A'$
- $A' \rightarrow \chi \chi$

(BDX)

Paolo Valente - INFN Roma
Decay to visible states (e^+e^-)

- Bremsstrahlung on thick target (dump experiments)
 - Requires the dark photon to decay beyond the dump
- Bremsstrahlung on thin target
 - Look for e^+e^- excess over Standard Model background (bump hunt, displaced vertices)
 - Requires $m_{A'} > 2m_e$
- Meson decays (collider experiment)
 - Requires coupling to quarks

Practically, all the $(g-2)_\mu$ favored band already excluded
Still large interest for excluding the uncovered parameter space

Indirect limits from a_μ and a_e

Thin target or meson decays, $A' \rightarrow$ visible

Re-analysis of electron beam-dump experiments
Decay to invisible states

- **Direct searches** for A' invisible decays only depend on ε^2 and $m_{A'}$.

- **No assumptions on coupling to quarks**
 (Both Y_{3S} and K^\pm results rely on that)

- **χ scattering** (indirect) searches instead depend on 4 parameters: $\varepsilon^2, m_{A'}, m_{\chi'}, \alpha_D$
Missing mass approach

Look for **one photon + nothing else**
in positron on target electrons annihilations

\[e^+e^- \rightarrow \gamma (E_{\text{miss}}) \]

- Know \(e^+ \) beam **momentum and position**
 - Tunable intensity (in order to optimize annihilation vs. pile-up)
- Measure the recoil photon **position** and **energy**
- Calculate \(M^2_{\text{miss}} = (\mathbf{p}_{e^+} + \mathbf{p}_{e^-} - \mathbf{p}_\gamma)^2 \)
 - Only minimal assumption: \(A' \) couples to leptons
 - **PADME** will limit the coupling of **any new light particle** produced in \(e^+e^- \) annihilations:
scalars (\(h' \)), vectors (\(A' \)) or pseudoscalars (ALPs)
Signal and background

We need to fight the backgrounds:
one photon + something else, typically **one or more photons** going undetected:

Bremsstrahlung
- Of course, also visible decays can be searched for
- Present PADME detector has been optimized for the invisible search
- However, we foresee scintillator detectors both on the “electron” and “positron” side of the analyzing magnet to allow detection of decays to l^+l^- pairs

$$e^+e^- \rightarrow \gamma A'$$
$$A' \rightarrow e^+e^-$$

Annihilation, visible decays
The beam test facility

Paolo Valente - INFN Roma

530/730 MeV e^+/e^- from the DAFNE LINAC

To the DAFNE collider main rings

transfer line

BTF

Damping ring

10 m
BTF positron beam

- Energy spread $\Delta p/p \sim 1\%$
- Beam spot: <1 mm RMS
- Divergence: $1 – 1.5$ mrad
- Beam position: 0.25 mm RMS
- Pulse duration: $1.5 – 40$ ns
 - 10 ns during collider operations
- Two intensity ranges (with and without attenuation target)
 - PADME will be limited by the pile-up anyhow

<table>
<thead>
<tr>
<th>Beam parameters</th>
<th>Parasitic mode</th>
<th>Dedicated mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With target</td>
<td>Without target</td>
</tr>
<tr>
<td>Particle species</td>
<td>e^+ or e^-</td>
<td>e^+ or e^-</td>
</tr>
<tr>
<td>Selectable by user</td>
<td>Depending on DAFNE mode</td>
<td>Selectable by user</td>
</tr>
<tr>
<td>Energy (MeV)</td>
<td>25–500</td>
<td>510</td>
</tr>
<tr>
<td>Energy spread</td>
<td>$1%$ at 500 MeV</td>
<td>$0.5%$</td>
</tr>
<tr>
<td>Rep. rate (Hz)</td>
<td>Variable between 10 and 49 Depending on DAFNE mode</td>
<td>1–49 Selectable by user</td>
</tr>
<tr>
<td>Pulse duration (ns)</td>
<td>10</td>
<td>1.5–40 Selectable by user</td>
</tr>
<tr>
<td>Intensity</td>
<td>$1–10^5$</td>
<td>$10^7–1.5 \times 10^{10}$</td>
</tr>
<tr>
<td>(particles/bunch)</td>
<td>Depending on the energy</td>
<td>Depending on the energy</td>
</tr>
<tr>
<td>Max. average flux</td>
<td>3.125×10^{10} particles/s</td>
<td></td>
</tr>
<tr>
<td>Spot size (mm)</td>
<td>$0.5–25$ (y) x $0.6–55$ (x)</td>
<td></td>
</tr>
<tr>
<td>Divergence (mrad)</td>
<td>1–1.5</td>
<td></td>
</tr>
</tbody>
</table>

See poster on Saturday:

The Frascati LINAC beam facility performance and upgrades

Speaker
Paolo Valente (Università e INFN, Ro.,)
Thin, segmented, full Carbon target

Monitor beam **intensity** and **spot** position/size

- **20×20×0.050 mm³** sensor
- **1 mm** pitch x-y graphitic strips produced by UV laser
- Moveable inside vacuum

Beam position scan
Sweeping/analysing magnet

- MBP-S series, on loan from CERN
 - Many thanks to TE-MSC-MNC, R. Lopez, D. Tommasini
- Poles: 100 cm length, 52 cm width
- Variable gap 11 to 20 cm, further extended to 23 cm
- Detailed field mapping
 - Good B field quality
 - Fringe field not negligible, even outside the coils, relevant for the precise beam steering onto the active target
Measuring the recoil photon

Our main detector is of course a calorimeter, with two basic requirements:

1. **Measure E_γ and θ_γ**
 - Good energy resolution: $1-2%/\sqrt{E[\text{GeV}]}$
 - High Photo-statistics
 - Containment
 - Good angular resolution: $\approx 1 \text{ mrad}$

2. **Fight pile-up**
 - Sub-ns timing resolution

- The material choice fixes the Molière radius determines granularity.
- The granularity + required angular resolution, set the distance from the target.
- Given the distance, the lateral size fixes the angular coverage (i.e. acceptance).
- The material choice also fixes the light yield, time resolution, and X_0.

Moreover:
- The overall size of the experiment is limited by the hall length (<5 m).
- Cost, complexity, time schedule, man-power.
Crystal choice

Small Moliére radius and high light yield: BGO and LYSO

- **BGO**: high LY, high ρ, small X_0 and small R_M, long τ_{decay}
 - $\sigma(E)/E$ in 1-2%/VE range
- **LYSO(Ce)**: high LY, high ρ, small X_0 and small R_M, short τ_{decay}
 - $\sigma(E)/E = 1.1%/\sqrt{E} \oplus 0.4%/E \oplus 1.2\%

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NaI(Tl)</th>
<th>BGO</th>
<th>BaF$_2$</th>
<th>CsI(Tl)</th>
<th>CsI(pure)</th>
<th>PbWO$_4$</th>
<th>LSO(Ce)</th>
<th>LaBr$_3$(Ce)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>651</td>
<td>7.13</td>
<td>4.89</td>
<td>4.51</td>
<td>4.51</td>
<td>8.3</td>
<td>7.40</td>
<td>5.29</td>
</tr>
<tr>
<td>MP</td>
<td>351</td>
<td>1050</td>
<td>1280</td>
<td>621</td>
<td>621</td>
<td>1123</td>
<td>2650</td>
<td>788</td>
</tr>
<tr>
<td>X_0</td>
<td>4.13</td>
<td>1.42</td>
<td>3.10</td>
<td>3.57</td>
<td>3.57</td>
<td>0.89</td>
<td>1.14</td>
<td>1.88</td>
</tr>
<tr>
<td>R_M^2</td>
<td>4.8</td>
<td>2.23</td>
<td>3.10</td>
<td>3.57</td>
<td>3.57</td>
<td>2.00</td>
<td>2.07</td>
<td>2.85</td>
</tr>
<tr>
<td>dE/dx</td>
<td>245</td>
<td>300</td>
<td>1200</td>
<td>304</td>
<td>304</td>
<td>101</td>
<td>209</td>
<td>38</td>
</tr>
<tr>
<td>λ_max</td>
<td>410</td>
<td>480</td>
<td>550</td>
<td>420</td>
<td>420</td>
<td>402</td>
<td>402</td>
<td>356</td>
</tr>
<tr>
<td>τ_{decay}</td>
<td>1.85</td>
<td>1.50</td>
<td>1.79</td>
<td>1.95</td>
<td>2.20</td>
<td>1.82</td>
<td>1.82</td>
<td>1.9</td>
</tr>
<tr>
<td>Relative output $d(\text{LY})/dT$</td>
<td>100</td>
<td>21</td>
<td>1.79</td>
<td>3.6</td>
<td>slight</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Units: g/cm^3</td>
<td>$^\circ\text{C}$</td>
<td>cm</td>
<td>cm</td>
<td>MeV/cm</td>
<td>cm</td>
<td>ns</td>
<td>nm</td>
<td>cm</td>
</tr>
<tr>
<td>g/cm^3</td>
<td>$^\circ\text{C}$</td>
<td>cm</td>
<td>cm</td>
<td>MeV/cm</td>
<td>cm</td>
<td>ns</td>
<td>nm</td>
<td>cm</td>
</tr>
</tbody>
</table>

Granularity $\approx R_M \rightarrow 2 \text{ cm}$

- $\sigma_{\text{point}} = 6 \text{ mm} \rightarrow 2 \text{ mrad at 3 m distance}$ (too much!)

But we have clusters:

- Center of gravity should have a better resolution
- Most of the energy will be in a single crystal, pulling the cog towards the center of the most energetic one

LYSO would be faster and with higher light yield but...
L3 BGO crystals

- BGO crystals **available** from the electromagnetic calorimeter of the former L3 experiment at LEP
- Reshape to square section **21×21 mm², 220 mm long**
Beam tests

- First tests of **diamond** target and of **5×5 crystals matrix**
- DAQ based on 1 GS/s digitizer (DRS-4)

2.3%/\sqrt{E} already achieved without inter-calibration
- BGO calorimeter cannot tolerate the Bremsstrahlung rate in the very central crystals
 - Inner hole 5×5 crystals
 - Small angle calorimeter: sustain a rate of O(10) clusters (40 ns pulses)
 - The only fast enough inorganic crystal is BaF$_2$ with a fast PMT readout
 - A possible alternative: Cherenkov detector

- Scintillating bars for detecting irradiating positrons in the magnetic field region (low energy e^+) and close to beam path (high energy e^+)
PADME experiment in summary

- 10³-10⁴ e⁺ on target per bunch, at 50 bunches/s (10¹³-10¹⁴ e⁺/year), limited by pile-up, mainly due to Bremsstrahlung events
- Positron annihilations on target: thin and active (50-100 μm) diamond with graphite strips
- Magnetic spectrometer ~ 1m length × 0.5 T for sweeping away the 550 MeV beam
 - Conventional magnet with large gap for gaining acceptance
 - Possibility to increase field for LINAC upgrade to ~ 1 GeV
- Positron veto (from Bremsstrahlung events)
- Cylindrical crystal calorimeter
- Optimized radius vs. distance by looking at the background rejection vs. acceptance
 - In order to have an acceptable rate, central hole
- Small angle detector for Bremsstrahlung veto
- Vacuum decay volume
- Positron veto detectors
- Compute missing mass from the momenta of the incoming positron and of the recoil photon
Signal vs. background

Simple cuts:
- 1 cluster in fiducial region (angle and momentum)
- no hit in positron veto in ±2ns
- <50 MeV in small angle
- 2-σ missing mass cut
Residual background

Bremsstrahlung

A high-resolution imaging veto could help rejecting $E\approx E_{\text{beam}}$ events.

3 photons decay

$\gamma\gamma$ events can be cleanly selected for measuring the beam flux, in addition to the diamond.
PADME sensitivity

Based on 2.5×10^{10} fully GEANT4 simulated 550 MeV e^+ on target events

- Number of background events is extrapolated to 1×10^{13} electrons on target
- Room for improvement by looking at the single event sensitivity (zero-background)

PADME 10^{13} EOT

- Bunch length of 40 ns:

 5000 e^+/bunch $\times 2 \cdot 10^7$ s $\times 49$ Hz

Lengthening the beam pulse would LINEARLY:

- Either reduce the run time for reaching 10^{13} EOT
- Or increase the sensitivity for the same running time of $2 \cdot 10^7$ s

$E_{e^+}=550$ MeV: $M_{A'} < 23.7$ MeV/c²

$E_{e^+}=1$ GeV: $M_{A'} < 32$ MeV/c²

Paolo Valente - INFN Roma
ALPs at PADME

PADME can search for **invisible** decaying or long-lived ALPs looking at $1\gamma + M_{\text{miss}}^2$ final states

In the **visible** final state $a \rightarrow \gamma\gamma$ all production mechanisms can be explored, extending the mass range in the region of $\sim 100\text{MeV}$

The observables at PADME will be: $\gamma\gamma$ or $\gamma\gamma$

Limits on ALPs coupling to photons
Dark Higgs at PADME

Dark Higgs production at PADME

\[e^+ + e^- \rightarrow A'h', \text{ with } h' \rightarrow A'A', \]

Depending on dark Higgs and dark photon masses:

a) \(2M_{A'} < M_{h'} \)
Dominant \(A'h' \rightarrow A'A'A' \rightarrow 6 \) leptons

b) \(2M_{A'} > M_{h'} \)
Dominant \(A'h' \rightarrow A' \) Invisible \(\rightarrow 2 \) leptons

In PADME just count the number of events with:

- 6 leptons in time
- With zero total charge
- And sum of the momenta < \(E_{\text{beam}} \)

No data below \(m_{A'} = 250 \text{ MeV} \)
Outlook

- **PADME detector construction** fully funded by INFN
- Aim at a first **physics run in 2018**, immediately after the KLOE-2 run
- Construction schedule tight but still respected
 - Mainly dominated by BGO calorimeter construction
 - Well advanced R&D activities on diamond thin target
 - Finalizing the design for vacuum vessel, positron veto, small angle calorimeter

Even though the sensitivity we have estimated is for the **presently available beam** parameters and energy, there is still **room for improvement**:

- **Beam:**
 - New gun pulser installation due in September for **extending the beam pulse** from 40 ns to hopefully 100-150 ns (linear increase of sensitivity)
 - LINAC consolidation and energy upgrade proposed (increase \(A' \) mass accessible range)
 - BTF beam-line splitting (increase the availability of the beam, i.e. the data-taking efficiency)

- **Detector:**
 - PADME is being designed in order to be capable of searching also **visible decays** of the dark photon
 - And also to replace the target with a thicker one in order to perform a “classical” **dump experiment**
PADME is looking forward to new jedi

http://www.lnf.infn.it/acceleratori/padme
The Frascati LINAC

LINAC parameters

<table>
<thead>
<tr>
<th></th>
<th>Design</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron beam final energy</td>
<td>800 MeV</td>
<td>510 MeV (750)</td>
</tr>
<tr>
<td>Positron beam final energy</td>
<td>550 MeV</td>
<td>510 MeV (550)</td>
</tr>
<tr>
<td>RF frequency</td>
<td></td>
<td>2856 MHz</td>
</tr>
<tr>
<td>Positron conversion energy</td>
<td>250 MeV</td>
<td>220 MeV</td>
</tr>
<tr>
<td>Beam pulse rep. rate</td>
<td>1 to 50 Hz</td>
<td>1 to 50 Hz</td>
</tr>
<tr>
<td>Beam pulse length</td>
<td>10 nsec</td>
<td>1.4 to 40 nsec</td>
</tr>
<tr>
<td>Gun current</td>
<td>8 A</td>
<td>8 A</td>
</tr>
<tr>
<td>Beam spot at converter</td>
<td>1 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>Normalized Emittance (mm mrad)</td>
<td>1 (electron) 10 (positron)</td>
<td><1.5</td>
</tr>
<tr>
<td>rms Energy spread</td>
<td>0.5% (electron) 1.0% (positron)</td>
<td>0.5% (electron) 1.0% (positron)</td>
</tr>
<tr>
<td>electron current on converter</td>
<td>5 A</td>
<td>5.2 A</td>
</tr>
<tr>
<td>Max. electron current (10 ns)</td>
<td>>150 mA</td>
<td>200 mA</td>
</tr>
<tr>
<td>Max. positron current (10 ns)</td>
<td>36 mA</td>
<td>85 mA</td>
</tr>
<tr>
<td>Trasport efficiency</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Accelerating structure</td>
<td>SLAC-type, CG, 2π/3</td>
<td></td>
</tr>
<tr>
<td>RF source</td>
<td>4x45 MWp SLED-ed klystrons</td>
<td></td>
</tr>
</tbody>
</table>

50 Hz repetition rate

Paolo Valente - INFN Roma
BTF experimental hall

Approximately <5.5 m total length
(<3 m lateral width)

Paolo Valente - INFN Roma
Decay to invisible states, scattering searches

$m_X < 0.5 \text{ MeV}, \alpha_D = 0.1$

$m_X = 50 \text{ MeV}, \alpha_D = 0.1$

$m^+_{dependence}$
Visible and invisible decays exclusion

Fix ε to the preferred value from α_μ ($\pm 2\sigma$), limits are represented in the plane α_D versus $m_{A'}$.

Still different curves due to the mass dependence of the dark sector particles m_χ.

N.B. ε is fixed to the minimum value of the α_μ band.
DAΦNE complex in Frascati

- DAΦNE, replacing ADONE (operational until 1993), has been running as $e^+ e^-$ collider at 1.02 GeV since 1999, for KLOE, DEAR, FINUDA, Siddharta, and now KLOE/2 ...
- Synchrotron light source operational with 3 lines (X, UV, IR)
- High current electron/positron linac + damping ring + test facility

Paolo Valente - INFN Roma
BTF beam-line upgrade
BTF users

[Luckily] BTF is already extensively used by many experimental groups in HEP and astro-particles...
Proposal of exploiting drift space at the end of accelerating structures put forward

Adding **four** more SLAC-type **accelerating sections** (3 m length)

- Fed by a 5th RF station: 45 MWp klystron + SLED: 17.5 MV/m \times 12 m = +210 MeV

Or/And

- Increasing the accelerating gradient splitting the RF power of one station /2 instead that /4 sections
 - Assuming 27 MV/m: +110 MeV (4 accelerating sections)
 - **1 to 3 more RF stations** for the last 4 to 12 sections
Acceptance vs. magnet

Magnet gap (vacuum pipe depth): fixes the maximum (vertical) acceptance together with the target position.

Given the gap, the minimum magnetic field is given by beam momentum and needed sweeping angle, depending on the calorimeter angular acceptance (in the bending, horizontal, plane).

Paolo Valente - INFN Roma
Calorimeter: signal acceptance

N=616 crystals, 2×2 cm² size

Fraction of energy loss, leaving at least 1.5 cells for lateral containment

Central hole to keep under control pile-up, mainly due to Bremsstrahlung events
Calorimeter 2γ and 3γ backgrounds

Lost: $\theta > 100$ mrad

Region 1
$\theta < 20$ mrad

Region 2
20 mrad < θ < 75 mrad

Recoil γ definition:
10 MeV < E < 400 MeV
30 mrad < θ < 65 mrad

Region 3
$\theta > 75$ mrad

Per-mil 3γ background

No 2γ events

Lost $q > 100$ mrad

Paolo Valente - INFN Roma
Increasing linac beam pulse length

Diluting the same number of positrons in a longer pulse is a plus from the point of view of pile-up.

Main limitation coming from the SLac Energy Doubling system (SLED) used to reach higher energy in our linac.

Uncompressed RF field 4.5 μs long, but with a 1/9 lower accelerating field.

Going off the flat top impacts the energy spread.

New pulser capable of up to 4.5 μs pulses will be installed during next shutdown (summer 2016).

500 ns pulses with 0.5% energy spread achieved at SLAC.
Vacuum vessel

Al 2219 T851 or AL6082 T6
2 mm side walls
4 mm ribs

Vacuum mandatory for **three purposes**:

1. Not to spoil **beam quality** before hitting the target
2. To minimize **photon interactions** before reaching the calorimeter
3. To minimize **positron interactions** before hitting the veto detector (in particular showers!)

Different possibilities under study to minimize the material thickness, i.e. increase acceptance (given the magnet gap) for the vessel, with the following requirements:

- Hold the vacuum
- Host the scintillating bars for positron veto detectors
- Interface to target box (upstream) and straight section before calorimeter (downstream)
Positron veto

Time resolution better than 500ps
Momentum resolution of few % based on impact position
Efficiency better than 99.5% for MIPs
Low energy part inside the magnet gap
High energy part close to not interacting beam
Calorimeter
BGO crystals

Small Angle
BaF$_2$ or SF57

High Energy positron veto

Positron veto

Target

Paolo Valente - INFN Roma
Monte Carlo simulation

- Complete GEANT4 simulation
- 3γ production via CalcHEP
Low momentum losses are reduced for $E_i < 400$ MeV

Interesting positron energy starting at ~ 150 MeV

Which granularity?

- 1 cm scintillator bars, readout by SiPM
- Few % momentum resolution in a large part of the spectrum
PADME TDAQ

- Readout based on digitizers CAEN V1742
- ~1000 channels
- ~33 FADC boards

- Trigger and clock distribution to the 33 boards
- Online FADC zero suppression (L0)
- FADC boards synchronization to few 100ps needed
Decay to invisible signal selection

- Only one cluster in calorimeter
 - Rejects $e^+e^-\rightarrow\gamma\gamma$, $e^+e^-\rightarrow\gamma\gamma(\gamma)$ final states
- $30\,\text{mrad} < \theta_{\text{Cl}} < 65\,\text{mrad}$
 - Improve shower containment $\sigma(E)/E$
- Positron veto: no tracks in the spectrometer in ±2 ns
 - Reject background from Bremsstrahlung identifying primary positrons
- Photon veto: no γ with $E_{\gamma}>50\,\text{MeV}$ in time in ±1 ns in the additional small angle veto (SAV), covering the hole acceptance
- Cluster energy within: $E_{\text{min}}(M_{A'}) < E_{\text{Cl}} < E_{\text{max}}(M_{A'})\,\text{MeV}$
 - Removes low energy bremsstrahlung photons and piled up clusters
- Missing mass in the region: $M^2_{\text{miss}} \pm \sigma(M^2_{\text{miss}})$
PADME-dump

- 10^{20} EOT, 1.2 GeV; 20 cm aperture at 50 cm from 8 cm W dump
- Zero background hypothesis, in depth production to be refined, not yet a sensitivity plot

Diagram:
- NA48/2
- BABar
- 10^{10}, 1.2 GeV
- 20 cm aperture at 50 cm from 8 cm W dump
- Now
- Real case

Note:
- $\mu^+\mu^-$ production in depth
- e^+e^- production

Institution:
- INFN Roma

Paolo Valente - INFN Roma
From **A. Celentano**

Acceptance limit at ≈100 MeV coming from beam energy

\[\alpha_D = 0.1 \quad m_\chi = 10 \text{ MeV} \]

Beam energy **1.2 GeV** (e⁻)

CsI detector 60×60×225 cm³ built with crystals from dismounted BaBar calorimeter?
A new **thin vacuum chamber**
A straight vacuum pipe to the inside of the existing dump cavity
Additional shielding for copying with neutron production
Use **DR pumps hall** for shielding and experiment