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Microchannel Plate PMTs (MCP-PMT)

MCPs are made from micro-capillary array substrates. Each pore is functionalized as a

continuous-dynode electron multiplier:
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Ability to resolve concurrent single-photons in space and time, with spatial

resolution largely determined by the anode design (figure is from simulation,
microstrip-line anode [G. Jocher])



Microchannel Plate PMTs (MCP-PMT) & LAPPD™

LAPPD = Large Area Picosecond Photo-Detector

The LAPPD MCP-PMT was primarily developed as an economical, large-area photodetector for
precise time-of-flight measurements in large-scale detectors for High Energy Physics
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Gains of > 107 have been
demonstrated with LAPPD MCPs,

Sealed 20x20 cm?glass tile, pictured after Cesiation process, in
along with single-photon timing the UChicago lab. [From A. Elagin’s ICHEP 2016 talk (yesterday)]

resolutions of ~50 ps.

references:

1) Timing characteristics of Large Area Picosecond... [NIM A 795, 2015]
2) psec.uchicago.edu

3) Swing by the INCOM booth here at ICHEP 2016 3



the (prototype) OTPC concept

With position and time-sensing MCP-PMTs and 9
matching readout electronics, each photon can

be resolved in 3-dimensions (2 space + 1 time)

permitting the concept of a ‘photon-" or

‘optical-" TPC (OTPC).

Towards the 3D tracking of ‘
relativistic charged particles in a L AELEE e N ‘

water volume by resolving the ‘
relative time and position of the e
"drifted' Cherenkov photons. S Ehhbl E "
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Application: Add a real-time

tracking dimension to a water-

based neutrino detector RPN PPSTEILE
DRI SRSTRPIEE

No LAPPDs during beam tests in 2014/2015-

relegated to the use of small, commercially

available devices (1/16% the LAPPD area) Prototype 40 kg OTPC

(w/ mirrors!)



Optics — track reconstruction

In simplest case, track parameters can be solved analytically through ray tracing (ignoring dispersion and
scattering)
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The Cherenkov photons propagate at the group velocity of water. The mean
OTPC group velocity <vg,,> =218 mm/ns (i.e. the OTPC ‘drift speed’)



OTPC Photodetector Module

PHOTONIS XP85022 (commercial) MCP-PMT

* 1024 anode pad mapped to
thirty-two 50Q micro-strips
with custom anode card,
pictured above

e MCP-PMT mounted to
anode card with low-
temperature Ag epoxy

* To efficiency use electronics
channels, use a single-
ended microstrip readout:

Terminate one end of < C
. . 1
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Readout electronics

Based on the PSEC4 ASIC, a waveform sampling chip operating at 10.24 Gigasamples/second.
- The OTPC uses 180 channels of PSEC4 readout.

- Each PSEC4 channel has a built-in threshold discriminator

- Multi-level, configurable trigger on the FPGA

Left: ACquisition and
Digitization with pseC4 (ACDC)
card

30-channel, 10.24 GSPS, PSEC4
board. The front-end analog
bandwidth is above 1 GHz.
Standalone readout or system
interface.

Right: ANNIE Central Card
(ACC)

Each back-end ACC manages up
to 8 front-end ACDC boards using
two network cables per board.

Data are at a rate of up to 1.6 CAT5/6 serial link
Gbps.

PSEC4: NIM A 735, 2014; arXiv:1309:4397
DAQ System: arXiv:1607.02395
ANNIE: arXiv:1504.01480



OTPC multi-photoelectron measurements

OTPC
405 nm pulsed laser _l I photo- 1 kHz Pulsed |a§er, 33 ps
_ detector FWHM pulse width
Iris Filter module
~1 mm lens
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Q -80- . - * Measure relative timing between 2 photo-
Channel 21 y g
< r . " . . .
123_ ; ; anne E electrons within same laser pulse, which are
140F El spatially separated on the MCP-PMT.
B [ |- B 551" * Uncalibrated PSEC4 ASIC — data only pedestal
o fmelpsl . subtracted
PSEC4 digitized Waveforms T rising edge fits * Single photon time resolution is ~75 ps using this
to extract the photon time-of-arrival single-ended readout technique.
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OTPC data

~40 cm of photo-detector coverage along OTPC z-axis
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OTPC data + gain calibration

Same three events from previous slide:

e (Calibrate the per-channel gain of the
OTPC

* Gain calibration using the average
integrated charge from single photon
signals

PSEC4 timestep, 97 ps
N W e w
PSEC4 signal (arb. units)

5 10 15 20 25 o 5 10 15 20 25 o 5 10 15 20 25 0 5 10 15 20 25 o S 10 15 20 25
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PSEC4 timestep, 97 ps
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5 10 15 20 25 o s 10 15 20 25 0 L3 10 15 20 25 ) 5 10 15 20 25 0 5 10 15 20 25
channel, MCPO channel, MCP1 channel, MCP2 channel, MCP3 channel, MCP4

= Find the number of photons detected
N along the track:

5 [
Isignal (arb. units)

=8= p.€e./25 mm (a)

PSEC4 timestep, 97 ps

—_
o
(RS

5 10 15 20 25
channel, MCP1

S 10 15 20 25
channel, MCPO

—¥- p.e./25 mm (b)

= p.e/3mm (C) ++
gt

‘H 1—H+]L

|'l'|||\||l||\l|||\||

I -
-600 -500 -400 -300 -200 11
OTPC z-position [mm]

III\\H|
[

-
o

No. Photons detected per OTPC z-bin

—




the time-projection

y
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Time-resolving the direct and mirror-reflected photons

Using a position-corrected time, remove contributions to the
time-projection from the particle velocity (assume p=1)
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Time-resolving the direct and mirror-reflected photons

Using a position-corrected time, remove contributions to the
time-projection from the particle velocity (assume p=1)

~ . /
/ ~1 dt dt 1 tan
tg:f[__ —_— = — — - = — 10— 7 T T T T
& dz  dz ¢ <vgroup > 90F- = — normal view =
3 80 [ ------ stereo view =
x10 o TOF ' E
1 I 1 1 I I 1 1 1 I 1 1 1 1 | 1 1 I 1 | 1 1 I 1 | I I e :_ _:
w 2.5 - '770 > 16 GeV/c, 1.6k thru-going triggers ™| § 60§ 3
g - Ps OTPC normal view data | Y 505_ " E
-'C_)' B \ direct photons _ 2 40 g_ _§
e 2_— —— mirror-reflected photons ] 30;_ : =
Q . directireflected = 055 20 ¢ E
k5 - ; N 10E- : =
"8 1.5 — OTPC stereo view data — Od""'m' '1'0 : ‘2'0’ o '3'0* —s "‘5'0‘ —
' - . No. reflected Cherenkov photons
o - i
— 1— — 160" gk T T I U I U=
S B | 1400 E — normal view
) - . - | < .
0 - - 120 : i | B 00 e stereo view  —
e 0.9 T 2. :
S B 1 & 0 E
< . 1 @ 8o g 3
0 | 1 1 | | 1 L —""‘ L I | 1 | | 1 O 60: ; i
0 1 2 3 4 5 < b ]
. iy 401+ ]
t’= Reconstructed photon (time - z-position/c) [ns] o -
200} .
Direct and mirror-reflected Cherenkov photons are clearly e I P s SR L
0 5 10 15 20 25 30 35 40
separated. On average, there were more reflected photons No. direct Cherenkov photons
14
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Optics — track reconstruction (using the mirror)

In simplest case, track parameters can be solved analytically through ray tracing (ignoring dispersion and
scattering)

nLEy ety 2y, Yy

Illlﬁ .°. MCP-PMT rlllll
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K vyt ty)
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s .. Cherenkov wavefront displacement from the OTPC
A .
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w Mirror 2 \ sinf. Fetan(6.)

4.
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Light-absorbing wall

The particle track position, with respect to the OTPC/beam axis, is determined at each OTPC
photodetector using the relative timing (At) between the direct and mirror-reflected photons



OTPC 3D reconstruction

(previously shown event)
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OTPC 3D reconstruction

(previously shown event)
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Conclusions

* Animplementation of single-photon time and space
resolving MCP-PMT photodetectors in a proof-of-
principle water Cherenkov OTPC was described

 Demonstrated <100 ps timing resolution and 3x3
mm? 2D spatial resolution on single photons with a )
PSEC4-based readout system and single-ended T ehame w30 chamna MR | chameWCr” © chamne MR chamma W4
microstrip-anode readout

At FNAL's MCenter test-beam facility, we tested the
detection and tracking performance using primarily
multi-GeV muons

*  For a through-going muon/MIP, we detect 79 + 20
Cherenkov photons

By time and space resolving these photons, we
measure an angular resolution of a few degrees (<50
mrad) and a spatial resolution on particle tracks of

PSECA4 timestep, 97 ps
s

T T T T T T

Event Cherenkov profile, along OTPC z-axis

T

I Showéring

HHHI| IIIHIII[ TTT

PR PR i Xk T T Y VA SN AT W WY o L e | Y S | T PR S i
0 5 10 15 20 25 30 35 40 45 50
OTPC sample [~cm]

<15 mm
What's next? i §
* Data presented here included only muon-like non- Q;g
showering tracks which account for a small fraction of o i
all the recorded events. Many other “interesting’ P §
events captured. f
Fig: G. Jocher

* Scaled-up version of the OTPC PSEC4-based
electronics to be installed in ANNIE run-2 with LAPPDs

Acknowledgements: Henry Frisch, UC PSEC group, & all the FNAL test-beam folks 18







Beam trigger + particle tagging

Y, reconstructed [mm]
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Future use LAPPDs as TOF + 2D position tagging for test-beam?
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Beam behind the collimator
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G4beamline [1] simulation includes a 60 m long mt*

beam incident on a fixed copper target, through
~1m steel absorber, and OTPC water volume
Expected flux is > 90% muons at a secondary beam
momentum of 16 GeV/c

Some particles from showering in the absorber
(~1% electrons). Larger percentage at higher
secondary beam energies

[1] Roberts et. al., 2007 PAC IEEE,
Beam simulation modified from D. Jensen
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PSEC4: 10 GSa/s front-end digitization

* Push for higher sampling speeds and lower 3 ]
total power consumption by designing in ] S — Sampling Rate: 10.37 GSals | -
deep-submicron CMOS processes a7[ -

e PSEC4:0.13 um CMOS
* On-chip analog-to-digital conversion

96.

—et
—&—
4
o
xR

Mean Sampling Time-step [ps]

 Sampling rate up to 15 GSa/s on 256 o E
sample cells/channe. Readout rate ~50 955 -
Mhz. (downsampling factor ~200) T St

Temperature [°C]
4 T
3 : I
500mV,,, (-2dBm) —
2 . SOmVpgp(—22dBm) '_9_' , ..... A ]
@ 1E By
i) /)
g ot — B
%_1 i !
< -2 E E
3 1.6 GHz BW ——%—-
4 : : ;
-5 I L M i
0.1 1.0 2.
Frequency [GHz]

PSEC4: A 15 GSa/s, 1.5 GHz bandwidth waveform digitizing
ASIC [NIM A 735, 2014,]
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Measuring time with PSEC4

(1) Calibrate time-base. Non Oi,;:i_\ Time-base: | 3
uniformities in the timebase = > o.E vy E
generator due to CMOS process — 0.25F =
variations. ~¥10% RMS/mean val. = 0af =

* (2) Fit waveforms. Full waveform £ 0155 E
template fitting or cross- =|| Pbbwrap-aroundoffset E
correlations=best results. é_ _

* (3) Measure time o A L L

| L L L L L 1 L L I L L 1 L | L L L L | L L L L |
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—~ L ] : ¥2 Indf: 19.5/21 .
W | B L . 7
2 sl 1 % t,: 5.591 ns . :
- B ] : C o: 537 ps . .
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© 0.6 — N . ]
. L i h 1 . 1: : ]
Q ¢ ] A . .
£ 04 - - ]
w L ] - . ’
L ] o0.05- . .
02__ —_ L ] B
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Optics

Chromatic timing errors

— 300 nm

| 350 nm
— 400 nm
450 nm
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S = QE (typ.)+borosilicate window
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0.2 B
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OTPC diameter ~0.25 m, longest optical path lengths ~35 cm
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OTPC data: selecting muons for track reconstruction

-Using gain calibration we measure the number of photons per track,
comparing different datasets (trigger configuration, water quality)

-For single-track reconstruction analysis, select muons based on number of
photons in event (try to remove events with delta-rays, etc)

Comparison of 16 and 32 GeV/c secondary-beam datasets
* Through-going trigger: 79 + 18 photo-electrons per track
* Front-only trigger: 67 £ 25

|
N T | Ii T T il T LI | LI | T I. I_
- : I ] 16 GeV, S1+R1+S2 trig
- I mean=1.9,6=0.098 -
§2] —— 32 GeV, S +R, trig.
c 102 _ _ —
O E mean=1.836=0.12 3
> C .
- ]
Y
O — —
e L A
-}
Z 10 =
= 1 N A Lo . Ll .
0 0.5 1 1.51 : 3.5 4
IOg1D(Ndetected) [photons]

Water quality: blue > red 55



Signal selection / measuring photon time-of arrival
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Angular reconstruction

Assuming a straight track over the ~40 cm length of the OTPC fiducial volume: a linear fit
to the time-projected direct Cherenkov photons is a measure of the track angle with
respect to the OTPC/beam axis.

at’ dt 1 tan 6
dz dz ¢ < Vgroup > For events with >17 direct
photons in normal view, we

R | | | | | | - measure a 1-0 angular
§ 70 16 GeV/c dataset, OTPC normal view 3 resolution of 48 mrad
= R / Linear fit over time-projected - (~3 degrees over 0.4 m)
= ~ v . ]
‘= 65 v direct Cherenkov photons
'g E E L0
733 60 v v — o i —— normal view
$ E E 120 ------- stereo view -
— v 3 Zioo- | =
0 N N e 1
-] = v | |_u BD_ -
(®)] 50_— ] S sof
c L v - -
© - . 40
t? 45__ ] 20_

-l ' ' ' ' ' ' ' L O g

2 4 6 8 10 12 14 16 18 No. direct Cherenkov photons

Min. Number of Photons in Fit
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Particle ID

Number of Events

Number of Events

[Preliminary] Muon vs showering-electron ID. Cut events based on signal
(charge) deposited in the OTPC rear MCP-PMT trigger

Peak distribution from typical thru-going MIPs
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Particle ID
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