

SOX:

SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO

38th International Conference on High Energy Physics

Chicago, August 4th 2016

Birgit Neumair on behalf of the Borexino/SOX Collaboration

Technical University of Munich

SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO

THE ANTINEUTRINO SOURCE

activity: (100-150) kCi \approx (3.7-5.5) PBq high Q value antineutrinos above IBD threshold $T_{1/2} = 285d$ $T_{1/2} = 17min$ 144Nd Q ~0.3 MeV $Q \sim 3 \text{ MeV}$

long life time

- production
- transportation
- measurement

THE BOREXINO DETECTOR talk by Davide D'Angelo, this morning

located at LNGS (3800 m.w.e)

water tank 2.1kt + 200 PMTs

buffer ~1000t PC+DMP

scintillator 270t PC+PPO

stainless steel sphere

6.85m radius ~ 2000PMTs

nylon vessel 150µm thick

source

in dedicated tunnel (1m x 1m)

DETECTION MECHANISM

➤ Inverse Beta Decay (IBD): $\overline{v}_e + p \longrightarrow e^+ + n$

• e^+ : E & L info about \overline{v}_e

• n: coincidence in time and space

background free

- ➤ PMTs collect scintillation light
 - ➤ energy E (5% @ 1MeV) time of flight
 - ➤ position L (10cm @ 1MeV)
- measurement of count rate: N(E,L)

STERILE NEUTRINO SIGNATURE

 $\sim 10^4$ events for 1.5y measurement time

survival probability in a 3+1 model:

$$P_{ee}\approx 1-\text{sin}^2\big(2\theta_{14}\big)\text{sin}^2\left(\frac{1.27\Delta m_{41}^2(\text{eV}^2)\text{L}(\text{m})}{\text{E}(\text{MeV})}\right)$$

Oscillations in:

- > rate
 - disappearance
 - for all Δm^2 values
- shape
 - spatial waves
 - for $\Delta m^2 \sim O(eV^2)$
 - L_{osc} > spatial resolution & L_{osc} < detector size
 - smoking gun signature

SENSITIVITY

Analysis in:

- rate
 - precise knowledge of
 - activity
 - neutrino spectrum
 - fiducial volume

SENSITIVITY

Analysis in:

- rate
 precise knowledge of
 - activity
 - neutrino spectrum
 - fiducial volume
- shape

no dependence on systematics in scale

SENSITIVITY

Analysis in:

- rate
 precise knowledge of
 - activity
 - neutrino spectrum
 - fiducial volume
- shapeno dependence on systematics in scale
- rate + shape combination

SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO

SOURCE PRODUCTION

FUSE PA Mayak

displacement chromatography

Birgit Neumair (TU Munich)

SOURCE SHIELDING AND TRANSPORTATION

shielding:

- ightharpoonup attenuation factor for 2.2MeV- γ : >10¹²
- ➤ 19cm thick W-alloy shield
- manufactured at Xiamen Ltd., China

transportation:

- few boarder crossings
- ➤ total transportation time less than 3 weeks

Birgit Neumair (TU Munich)

SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO

$$N(E,L,t) \sim A(t)$$

$$P(t)$$

Birgit Neumair (TU Munich)

$$N(E,L,t) \sim A(t) \cdot S_v(E,b)$$

$$P(t)/\langle E(b) \rangle$$

1st forbidden non unique decay

- large theoretical uncertainties
- > previous measurements differ up to 10%

$$N(E,L,t) \sim A(t) \cdot S_v(E,b)$$

$$P(t)/\langle E(b) \rangle$$

1st forbidden non unique decay

- large theoretical uncertainties
- > previous measurements differ up to 10%

POWER MEASUREMENT

➤ Measurement of heat extracted by a water flow:

 $P \sim \dot{m} \cdot \Delta T$

- ➤ initial power ~ 1kW
- ➤ 2 calorimeters in preparation

TUM/Genova Calorimeter

CEA Calorimeter

MINIMIZATION OF HEAT LOSSES

convection

radiation

conduction

vacuum tank $p < 5.10^{-5}$ mbar

super insulator 2 x 10 foils

suspension platform+ kevlar ropes

SPECTRAL MEASUREMENTS

➤ 2 independent measurements (TUM & CEA)

TUM Setup

- measurements are ongoing
 - characterization & calibration of detectors
 - first measurements with a ¹⁴⁴Ce sample
- precision measurement planned with PERKEO III at TUM

SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO

NEW CALIBRATION CAMPAIGN

focused on the outer volume not used in solar analysis

- energy scale
- uniformity of detector response
- position reconstruction → fiducial volume

energy scale test from last calibration

SUMMARY

> SOX

- (100-150)kCi ¹⁴⁴Ce \overline{v}_e -source (⁵¹Cr v_e -source in case of a positive signal)
- Borexino: 270t liquid scintillator detector at LNGS
- sterile neutrino signature is an oscillatory pattern in E & L
 - rate and shape analysis
- > minimization of systematic uncertainties
 - power and spectral measurements in preparation
 - Borexino calibration campaign next year
- start data taking end of 2017/ early 2018
- ➤ first results in 2018

SOX: a project of the Borexino collaboration and CEA

Paris

BACK UP

DISPLACEMENT CHROMATOGRAPHIE

REQUIREMENTS ON SOURCE

- o Ratio of the total thermal power released by <u>controllable</u> radionuclide impurities to the thermal power released by 144 Ce + 144 Pr \leq 1 x 10⁻³ (W/W)
- o Ratio of the activity of impurities emitting gammas with $E \ge 1$ MeV to 144 Ce activity $\le 1 \times 10^{-3}$ (Bq/Bq)
- o Ratio of 244 Cm activity to 144 Ce activity ≤ 1 x $^{10-5}$ (Bq/Bq)
- o Ratio of 241 Am activity to 144 Ce activity ≤ 5 x $^{10-3}$ (Bq/Bq)
- List of nuclei to check (γ,α,ICPMS)

```
<sup>22</sup>Na, <sup>44</sup>Ti-<sup>44</sup>Sc, <sup>49</sup>V, <sup>54</sup>Mn, <sup>55</sup>Fe, <sup>57</sup>Co, <sup>60</sup>Co, <sup>63</sup>Ni, <sup>65</sup>Zn, <sup>68</sup>Ge-<sup>68</sup>Ga, <sup>90</sup>Sr-<sup>90</sup>Y, <sup>91</sup>Nb, <sup>93</sup>mNb, <sup>106</sup>Ru-<sup>106</sup>Rh, <sup>101</sup>Rh, <sup>102</sup>Rh, <sup>102</sup>mRh, <sup>102</sup>mRh, <sup>108</sup>mAg, <sup>110</sup>mAg, <sup>109</sup>Cd, <sup>113</sup>mCd, <sup>119</sup>mSn, <sup>121</sup>mSn, <sup>125</sup>Sb, <sup>134</sup>Cs, <sup>137</sup>Cs, <sup>133</sup>Ba, <sup>143</sup>Pm, <sup>144</sup>Pm, <sup>145</sup>Pm, <sup>146</sup>Pm, <sup>147</sup>Pm, <sup>145</sup>Sm, <sup>151</sup>Sm, <sup>150</sup>Eu, <sup>152</sup>Eu, <sup>154</sup>Eu, <sup>155</sup>Eu, <sup>148</sup>Gd, <sup>153</sup>Gd, <sup>157</sup>Tb, <sup>158</sup>Tb, <sup>171</sup>Tm, <sup>173</sup>Lu, <sup>174</sup>Lu, <sup>172</sup>Hf-<sup>172</sup>Lu, <sup>179</sup>Ta, <sup>178</sup>mHf, <sup>194</sup>Os-<sup>194</sup>Ir, <sup>192</sup>mIr, <sup>193</sup>Pt, <sup>195</sup>Au, <sup>194</sup>Hg-<sup>194</sup>Au, <sup>204</sup>Tl, <sup>210</sup>Pb→<sup>206</sup>Pb, <sup>207</sup>Bi, <sup>208</sup>Po, <sup>209</sup>Po, <sup>228</sup>Ra→<sup>208</sup>Pb, <sup>227</sup>Ac→<sup>207</sup>Pb, <sup>228</sup>Th→<sup>208</sup>Pb, <sup>232</sup>U→<sup>208</sup>Pb, <sup>235</sup>Np, <sup>236</sup>Pu-<sup>232</sup>U, <sup>238</sup>Pu→<sup>230</sup>Th, <sup>239</sup>Pu, <sup>240</sup>Pu, <sup>241</sup>Pu-<sup>241</sup>Am, <sup>241</sup>Am, <sup>242</sup>mAm-<sup>230</sup>Th, <sup>243</sup>Cm→<sup>235</sup>U, <sup>244</sup>Cm, <sup>248</sup>Bk-<sup>244</sup>Am, <sup>249</sup>Bk-<sup>249</sup>Cf, <sup>248</sup>Cf, <sup>249</sup>Cf, <sup>250</sup>Cf, <sup>252</sup>Es, <sup>254</sup>Es-<sup>250</sup>Bk
```

PERKEO III

