SOX: # SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO 38th International Conference on High Energy Physics Chicago, August 4th 2016 Birgit Neumair on behalf of the Borexino/SOX Collaboration Technical University of Munich ## SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO #### THE ANTINEUTRINO SOURCE activity: (100-150) kCi \approx (3.7-5.5) PBq high Q value antineutrinos above IBD threshold $T_{1/2} = 285d$ $T_{1/2} = 17min$ 144Nd Q ~0.3 MeV $Q \sim 3 \text{ MeV}$ long life time - production - transportation - measurement ## THE BOREXINO DETECTOR talk by Davide D'Angelo, this morning located at LNGS (3800 m.w.e) water tank 2.1kt + 200 PMTs buffer ~1000t PC+DMP scintillator 270t PC+PPO stainless steel sphere 6.85m radius ~ 2000PMTs nylon vessel 150µm thick #### source in dedicated tunnel (1m x 1m) #### **DETECTION MECHANISM** ➤ Inverse Beta Decay (IBD): $\overline{v}_e + p \longrightarrow e^+ + n$ • e^+ : E & L info about \overline{v}_e • n: coincidence in time and space background free - ➤ PMTs collect scintillation light - ➤ energy E (5% @ 1MeV) time of flight - ➤ position L (10cm @ 1MeV) - measurement of count rate: N(E,L) #### STERILE NEUTRINO SIGNATURE $\sim 10^4$ events for 1.5y measurement time survival probability in a 3+1 model: $$P_{ee}\approx 1-\text{sin}^2\big(2\theta_{14}\big)\text{sin}^2\left(\frac{1.27\Delta m_{41}^2(\text{eV}^2)\text{L}(\text{m})}{\text{E}(\text{MeV})}\right)$$ #### Oscillations in: - > rate - disappearance - for all Δm^2 values - shape - spatial waves - for $\Delta m^2 \sim O(eV^2)$ - L_{osc} > spatial resolution & L_{osc} < detector size - smoking gun signature #### **SENSITIVITY** #### Analysis in: - rate - precise knowledge of - activity - neutrino spectrum - fiducial volume #### **SENSITIVITY** #### Analysis in: - rate precise knowledge of - activity - neutrino spectrum - fiducial volume - shape no dependence on systematics in scale #### **SENSITIVITY** #### Analysis in: - rate precise knowledge of - activity - neutrino spectrum - fiducial volume - shapeno dependence on systematics in scale - rate + shape combination ## SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO #### **SOURCE PRODUCTION** FUSE PA Mayak displacement chromatography Birgit Neumair (TU Munich) #### SOURCE SHIELDING AND TRANSPORTATION #### shielding: - ightharpoonup attenuation factor for 2.2MeV- γ : >10¹² - ➤ 19cm thick W-alloy shield - manufactured at Xiamen Ltd., China #### transportation: - few boarder crossings - ➤ total transportation time less than 3 weeks Birgit Neumair (TU Munich) ## SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO $$N(E,L,t) \sim A(t)$$ $$P(t)$$ Birgit Neumair (TU Munich) $$N(E,L,t) \sim A(t) \cdot S_v(E,b)$$ $$P(t)/\langle E(b) \rangle$$ 1st forbidden non unique decay - large theoretical uncertainties - > previous measurements differ up to 10% $$N(E,L,t) \sim A(t) \cdot S_v(E,b)$$ $$P(t)/\langle E(b) \rangle$$ 1st forbidden non unique decay - large theoretical uncertainties - > previous measurements differ up to 10% #### POWER MEASUREMENT ➤ Measurement of heat extracted by a water flow: $P \sim \dot{m} \cdot \Delta T$ - ➤ initial power ~ 1kW - ➤ 2 calorimeters in preparation TUM/Genova Calorimeter **CEA Calorimeter** ### MINIMIZATION OF HEAT LOSSES convection radiation conduction vacuum tank $p < 5.10^{-5}$ mbar super insulator 2 x 10 foils suspension platform+ kevlar ropes #### SPECTRAL MEASUREMENTS ➤ 2 independent measurements (TUM & CEA) TUM Setup - measurements are ongoing - characterization & calibration of detectors - first measurements with a ¹⁴⁴Ce sample - precision measurement planned with PERKEO III at TUM ## SHORT DISTANCE NEUTRINO OSCILLATIONS WITH BOREXINO #### NEW CALIBRATION CAMPAIGN focused on the outer volume not used in solar analysis - energy scale - uniformity of detector response - position reconstruction → fiducial volume energy scale test from last calibration #### **SUMMARY** #### > SOX - (100-150)kCi ¹⁴⁴Ce \overline{v}_e -source (⁵¹Cr v_e -source in case of a positive signal) - Borexino: 270t liquid scintillator detector at LNGS - sterile neutrino signature is an oscillatory pattern in E & L - rate and shape analysis - > minimization of systematic uncertainties - power and spectral measurements in preparation - Borexino calibration campaign next year - start data taking end of 2017/ early 2018 - ➤ first results in 2018 # SOX: a project of the Borexino collaboration and CEA **Paris** ## **BACK UP** ### DISPLACEMENT CHROMATOGRAPHIE #### REQUIREMENTS ON SOURCE - o Ratio of the total thermal power released by <u>controllable</u> radionuclide impurities to the thermal power released by 144 Ce + 144 Pr \leq 1 x 10⁻³ (W/W) - o Ratio of the activity of impurities emitting gammas with $E \ge 1$ MeV to 144 Ce activity $\le 1 \times 10^{-3}$ (Bq/Bq) - o Ratio of 244 Cm activity to 144 Ce activity ≤ 1 x $^{10-5}$ (Bq/Bq) - o Ratio of 241 Am activity to 144 Ce activity ≤ 5 x $^{10-3}$ (Bq/Bq) - List of nuclei to check (γ,α,ICPMS) ``` ²²Na, ⁴⁴Ti-⁴⁴Sc, ⁴⁹V, ⁵⁴Mn, ⁵⁵Fe, ⁵⁷Co, ⁶⁰Co, ⁶³Ni, ⁶⁵Zn, ⁶⁸Ge-⁶⁸Ga, ⁹⁰Sr-⁹⁰Y, ⁹¹Nb, ⁹³mNb, ¹⁰⁶Ru-¹⁰⁶Rh, ¹⁰¹Rh, ¹⁰²Rh, ¹⁰²mRh, ¹⁰²mRh, ¹⁰⁸mAg, ¹¹⁰mAg, ¹⁰⁹Cd, ¹¹³mCd, ¹¹⁹mSn, ¹²¹mSn, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹³³Ba, ¹⁴³Pm, ¹⁴⁴Pm, ¹⁴⁵Pm, ¹⁴⁶Pm, ¹⁴⁷Pm, ¹⁴⁵Sm, ¹⁵¹Sm, ¹⁵⁰Eu, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ¹⁴⁸Gd, ¹⁵³Gd, ¹⁵⁷Tb, ¹⁵⁸Tb, ¹⁷¹Tm, ¹⁷³Lu, ¹⁷⁴Lu, ¹⁷²Hf-¹⁷²Lu, ¹⁷⁹Ta, ¹⁷⁸mHf, ¹⁹⁴Os-¹⁹⁴Ir, ¹⁹²mIr, ¹⁹³Pt, ¹⁹⁵Au, ¹⁹⁴Hg-¹⁹⁴Au, ²⁰⁴Tl, ²¹⁰Pb→²⁰⁶Pb, ²⁰⁷Bi, ²⁰⁸Po, ²⁰⁹Po, ²²⁸Ra→²⁰⁸Pb, ²²⁷Ac→²⁰⁷Pb, ²²⁸Th→²⁰⁸Pb, ²³²U→²⁰⁸Pb, ²³⁵Np, ²³⁶Pu-²³²U, ²³⁸Pu→²³⁰Th, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu-²⁴¹Am, ²⁴¹Am, ²⁴²mAm-²³⁰Th, ²⁴³Cm→²³⁵U, ²⁴⁴Cm, ²⁴⁸Bk-²⁴⁴Am, ²⁴⁹Bk-²⁴⁹Cf, ²⁴⁸Cf, ²⁴⁹Cf, ²⁵⁰Cf, ²⁵²Es, ²⁵⁴Es-²⁵⁰Bk ``` ## PERKEO III