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A set of EW and flavor observables are going to be used to

constrain the additional neutrino mixing.
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mixing ⌘ much more suppressed

experimental verification extremely challenging

If smallness of m⌫ comes only from the suppression with MN
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Alternatively, smallness of m⌫ may naturally stem from an

approximate L instead of a huge hierarchy of masses

(inverse or linear Seesaw)
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If L is exact: m̂ = 0 while ⌘ 6= 0 and arbitrarily large.

where Ni is an arbitrary number of extra heavy fields.
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Summary

A set of EW and flavor observables have been used to

constrain the additional mixing in two di↵erent scenarios.

A non-zero value for the e and ⌧ mixings with a significance

of 2� and an upper bound for the µ mixing have been

found in both scenarios.

In the G-SS scenario, ⌘eµ is contained by µ ! e� while ⌘⌧e and ⌘⌧µ
are constrained by indirect bounds through Schwarz inequality.
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1-loop effect

Several observables go with:
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1-loop effect
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1-loop effect

FIG. 5: T parameter versus 1-loop correction to mν for different values of the L-violating param-

eters µ1 and µ3.

If both µ1 and µ3 are simultaneously included and dominate over the L-conserving Λ and
Λ′ then T is given by:

T ≃
v4EW

64πs2wM
2
W

(

∑

α

|Yα|2
)2 6µµ1 − (3µ2

1 + µ2) log
(

µ+µ1

µ−µ1

)

µ3µ1

, (39)

where µ =
√

µ2
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3. In this limit, negative values of T are also easily accessible. However,
the price to pay is high, the approximate B-L symmetry protecting the Weinberg operator
despite the Yukawas at the very border of perturbativity and the low Seesaw scale, has
been strongly broken by µ1 and µ3. While this does not induce any dangerous corrections to
neutrino masses at tree level, and hence when working with the Casas-Ibarra parametrization
as in Ref. [24] the correct masses and mixings seem to be recovered, loop corrections need
to also be taken into account since no protecting symmetry can now suppress them. Indeed,
the loop contributions mediated by µ1 and µ3 to the light neutrino masses are found to
be [33, 42–44]:
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These corrections can indeed be sizable and in Fig. 5 we show the values that the loop
contribution to the light neutrino masses take in order to recover a given value for −2αT
for different values of µ1 and µ3. From inspection of Eq. (41), the limit of vanishing µ1

would render f(M) = 0, keeping under control the loop corrections to neutrino masses4.

4 In this limit with µ3 ≫ Λ, L-symmetry is recovered with two degenerate neutrinos with mass µ3 that form
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